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Abstract—More and more software libraries and applications
in high-performance computing and distributed systems are
coded using the Java programming language. The correctness
of such pieces of code w.r.t. a given set of security policies often
depends on the correct handling of timing between concurrent
or recurrent events.

Model-checking has proven to be an effective tool for verifying
correctness of software. In spite of the growing importance of
this application area of formal methods, though, no one targets
the problem of verifying the correctness of real-time software
w.r.t. timed specifications. The few existing works focus on very
different problems, such as schedulability analysis of Java tasks.
We describe an approach combining rule-based static analysis
together with symbolic execution of Java code to extract networks
of timed automata from existing software and then use Uppaal
to model-check it against timed specifications. We claim that this
approach can be helpful in model-checking security policies of
real time java software.

I. INTRODUCTION

High-Performance Computing (HPC), Internet of Things
(IoT), Cyber-Physical Systems (CPSs), Automotive Systems
are all examples of recent and growing areas where real-
time software plays a key role. Many of them are intrinsically
safety and security critical. While safety critical systems have
requirements expressible in the form of invariants that are
expected to hold for the entire system life, security critical
systems are characterized by requirements that fall in the well
known Confidentiality, Integrity, and Availability (CIA) triad.
For this reasons, it is becoming crucial to have appropriate
techniques and tools that guide the engineer through the task
of formally verifying existing software. We underline that most
of the existing approaches in literature focus on certifying that
protocols or high level software models are safe and secure,
but this does not imply that actual implementations of those
protocols and models are exempt from bugs. For instance, in
recent years two popular bugs, viz. Heartbleed [1] and GOTO-
fail [2], affected popular implementation of the SSL protocol,
putting several production environments and service providers
at risk.

Software model checking techniques can be employed in
order to certify the correctness of actual pieces of code
w.r.t. given specifications, while alternative approaches such as
systematic testing can only conjecture it [3]. The specifications
used in software model checking can, in principle, be used to
express the safety and security requirements to be checked. A
prerequisite to apply software model checking, though, is to

have a finite state model of the software under investigation
that is as faithful as possible in describing the behavior of the
original piece of code, at least w.r.t. the checked specifications.
The two main research questions that drive our work are:
(i) how to extract a finite-state representation of real-time
Java code, and (ii) how faithful is such representation when
checking safety and security policies of the software under
investigation.

We present a model-checking methodology for Java soft-
ware, together with a prototype implementation. The choice
of Java is motivated by the fact that it is a very popular
choice in two critical areas, viz. high performance computing
and real-time software [4], [5] . The core components of
the methodology employ rule-based approaches in order to:
compute the finite-state representation of each Java thread and
detect the timing constraints between events encoded in the
Java program. With a case study, we show how to use the tool
in order to discover a real bug that was present in a real-world
project.

II. RELATED WORK

In spite of the extensive use of Java in both high-
performance computing and real-time software, only few
authors (e.g. see [6], [7], [8]) focused on timed automata
extraction from source code written in a general purpose
programming language, as well as model checking code
implementing real-time distributed algorithms. Some of them
focus on the extraction of control flow automata [6], [7], not
taking into account the role played by program variables along
the execution. Others focus on schedulability and worst case
execution time [8], [9], but do not consider the correctness
w.r.t. timed specifications. To the best of our knowledge, none
of them considers the problem of model-checking safety and
security requirements directly from Java code. This paper is a
first step towards filling the gap.

Software verification techniques can be classified [10], [11]
in techniques able to work with the concrete state space and
techniques able to work with an abstract state space. The term
concrete indicates that such techniques are able to represent
any exact change of the program variables. This approach
is unfeasible whenever we have infinite or very large state
programs, as often happens with software. A trade-off between
time/space complexity and completeness is required. This
usually means to use techniques based on systematic execution



exploration [3], [12], a kind of dynamic analysis that is sound,
exempt from spurious counterexamples, but incomplete since
some counterexamples falsifying the checked property in the
original software may not be detected [13]. An alternative is
represented by abstraction where the concrete state space is
partitioned into equivalence classes, each equivalence class
being an abstract state [14], [15], [16], [17], [6], [7], [18].
Abstraction-based verification techniques are a kind of static
analysis, thus they are complete but may introduce spurious
counterexamples. To recap, abstraction-based verification can
prove the correctness of a software whereas systematic testing
can only conjecture it.

With respect to abstraction techniques, several techniques
have been proposed: the most popular and effective are pred-
icate abstraction and control flow abstraction. With predicate
abstraction, the equivalence classes (i.e. abstract states) are
created using predicates over a subset of the program vari-
ables (Fig. 2.c): the larger, the better, but the more complex.
This means that each abstract state is denoted by a boolean
combination of these predicates that over-approximates the
reachable concrete states [19]. This abstraction computation
is usually done using a Satisfiability Modulo Theories (SMT)
solver [14], [15], [20], [21], [16], [22], [18]. Predicate ab-
straction can also be applied to clock variables [23]. With
control flow abstraction, the equivalence classes are denoted
by the program locations (2.d), an abstract state for each
program location, i.e. a program statement [17], [6], [7],
[24]. Therefore, program variables are not taken at all into
account and the abstract state space coincides with the set
of program locations. As a consequences, the abstract state
space can be computed very quickly (no SMT solvers must
be involved), but, at the cost that several program properties
can not be verified. A preliminary version of this work [7]
focused on Java and real-time, and thus dealt with timed
automata extraction from a general purpose language, but
adopted control flow abstraction and thus properties involving
variable states can not be verified. This work extends that
introducing predicate abstraction techniques.

III. OVERVIEW

The methodology presented in this work is based on static
analysis techniques of Java code, in order to produce a network
of timed automata simulating the behavior of the program. The
overall task can be seen as the combination of several static
analyses sub-tasks, each focusing on solving a specific sub-
problem. A graphical representation is given in Fig. 1.

The parsing step consists in extracting an intermediate
representation of the entire Java project. We exploit the Eclipse
JDT parser for Java 8 to produce a reduced abstract syntax tree
(AST), and we store it in no-sql database structure for saving
time when the methodology is run interactively by the user.

A successive phase traverses the AST and along the
way it annotate timestamp variables. Inspired by [25], [7],
and using a list of common Java methods manipulating
timestamps as well as Java types used to represent
time values, we label as timed variables those variables
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Fig. 1: A methodology for extracting networks of timed
automata from Java code

in the program that are used as timestamps along the
program (e.g. becuase they used to store the result of
method java.lang.System.currentTimeMillis,
or because they are passed as input to the
java.lang.Thread.sleep method). We expect that the
list of Java methods and types used to identify timestamps
in the program can be maintained in a centralized way,
together with the implementation of the methodology itself,
and that the user is in principle allowed to add custom
types and extend such sources of information. Ideally, finer
implementations can allow communities of users to share
their customizations of such list, to shared the acquired
knowledge when analyzing Java real-time software.

The next step focuses on how to extract discrete states
and transitions representing the program discrete behavior.
To this aim, we ask the user to provide a set of first-order
predicates over a subset of the program variables. Through
them, it is possible to abstract each concrete configuration of
the program variables onto a single first-order predicate. If
one or more variables have no associated predicate, then we
assume they can assume any value. User specified predicates
are k-ary, thus they can relate at any time the concrete states
of k variables. Successively, each instruction ι of the program
is interpreted as a first-order predicate α(ι)(s, t), relating the
state of variables before executing the given instruction (s), to
the state of the same variables after executing it (t). Notice
that it is not possible to give a first-order interpretation of
any instruction of an arbitrary Java program1. For this reason,
this step necessarily employs a set of rules that, in principle,
can be extended over time in order to detect relevant patterns
appearing in Java programs. In case none of the rules applies

1think for example to the invocation of a recursive method on some arbitrary
input



to the Java instruction under analysis, we map the instruction
onto the tautology binary predicate α(ι) = >, relating any
source configuration to any target configuration. This ensures
that every abstract transition α(ι) is an existential abstraction
of the concrete instruction ι, for any ι. This is implemented
by means of modern SMT solvers [] .

The successive phase extracts timing information encoded
in the program. This is achieved identifying a suitable set of
clock variables able to describe the time relations between
events as they are handled by the program. Since the final
model will be a network of timed automata, this in practice
consists in inferring:

• how many clock variables should be added to the result-
ing timed automata,

• which clock constraints add to the discrete transitions of
the timed automata, and

• what discrete transitions should reset clock variables.

At the moment, this stage takes advantage of the timestamp
annotations added in the previous stage, together with addi-
tional so-called clock annotations added by the user. In the
concluding section we will underline how this stage can be
enhanced by means of a set of rules aiming at recognizing
how timestamp variables are used along the program.

A state-space optimization step concludes the methodology.
As will be clear in the next section, the discrete component
combines the status of the program-counter registry, i.e. the
pointer to the next instruction to be executed, together with
the (abstract) state of the program variables. We can say that
a (abstract) discrete state is a pair (α(σ), pc) where α(σ)
is the first-order predicate abstracting the concrete variable
assignment σ, while pc is the value of the program-counter
registry. It is thus possible that applying some (finite) sequence
of instructions ι1, . . . , ιn do not alter the abstract state of
program variables α(σ), but only the program-counter com-
ponent of the state. More formally, the following sequence
of transitions is possible: (α(σ), pc)

α(ι1)−−−→ (α(σ), pc1)
α(ι2)−−−→

. . .
α(ιn)−−−→ (α(σ), pcn). Under suitable conditions, such chain

of states and transitions can be reduced to a single transition
(α(σ), pc)

α(ι1);...;α(ιn)−−−−−−−−−→ (α(σ), pcn), eliminating the interme-
diate states. We will see in Sec. VI that even this simple idea
proves to be very helpful in reducing the size of the extracted
timed automata. This reduction can be applied whenever the
specification does not look at the value of the program-counter
component of the state.

The network of timed automata resulting from applying our
methodology can in principle be used for several purposes,
e.g.:

• for model checking safety and security policies against
some logical property provided by the user and exploiting
some of the existing tools such as Uppaal or ... ;

• for simulation purposes, e.g. again using Uppaal or ...
• as a documentation means, giving a high-level view of

the code ad our hands (e.g. for software (re-)engineering
purposes).

In this work we stress the fact that the model checking
purpose is very helpful in order to assist proving that pieces of
real-time Java software are indeed safe and secure. Using the
formalization of security properties by Clarkson and Schneider
[26], [27], we claim that this approach can in principle be
applied to model-check a sub-class of hyper-properties specifi-
cations, e.g. k-hyper-safety or k-liveness, i.e. safety or liveness
specifications that can be falsified by systematically exploring
up to k execution traces of the program under investigation.

The methodology is interactive in the sense that if the
user finds the returned network of timed automata not precise
enough for checking the desired security policy, he or she can
provide different abstraction predicates and generate a more
refined discrete component, or alternatively add more detailed
clock information about the time handling of events by the
program itself.

Since the parsing phase is rather standard, and techniques
for labeling the timed variables has been extensively described
in [25], [7], in this work we will describe how to extract the
discrete and the timing component from the Java source code.

A. Attacker model

An intruder (or attacker) model is necessary when a system
is model checked. Working with security protocols, the most
popular intruder model is probably the Dolev-Yao attacker
[28], [29]. The key idea behind such protocols is that all par-
ticipants are expected to follow their role in the protocol under
investigation, while the intruder is allowed freely allowed to
alter messages in the network, send messages in any order
and with any content, store messages for later use and forge
new messages. The only operation is not allowed to do is to
decrypt an encrypted message without the proper (symmetric
or asymmetric) key. At a very abstract level, we can see the
attacker as an hostile environment that can choose to play
against the protocol participants from the outside.

In this sense, the intruder model is very similar to the
Dolev-Yao one. We have to replace the protocol with the
piece of code, the participating actors with the threads from
which a network of timed automata is derived, and the hostile
environment originally made of exchanged messages with the
possible values assumed by the variables affecting the behavior
of the threads under investigation.

Our interpretation of the Dolev-Yao intruder model for
software is still very general and capable of modeling an
active attacker that selects a strategy to play against the model
checked piece of code. It is common practice to strengthen
production software with techniques for sanitizing the input
values provided by final users. Nevertheless it is also very
common that programmers forget to sanitize some of the input
parameters, or that the sanitation procedure is incomplete.
Errors like causes vulnerabilities to remain silent in production
systems for years, before being noticed. In the meantime, a
smart hacker can discover it either by accident or by careful
analysis of the application behavior. Such vulnerabilities may
lead to invoke pieces of code after having assigned arbitrary
values to variables that affect the behavior of the code itself,



void MyThread(int i, int j) {
L0: if (i >= j) {
L1: i++;

}
L2: j++;
L3: return;

}

Fig. 2: A very simple source code

i.e. in a hostile environment. This motivates us to use this
model of intruder when model checking security of Java real-
time software.

Currently, the implementation of the methodology produces
a network of timed automata containing the parallel compo-
sition of each thread with the intruder model. This allows
to explore the behavior of each thread under any possible
assignment of variables affecting the thread execution.

IV. ABSTRACTING THE DISCRETE COMPONENT

Let assume two (disjoint) finite sets of variables that we
call concrete and abstract, respectively denoted by V and
W . We call abstraction any mapping from a concrete state
space onto an abstract one: α : conf(V ) → conf(W ), where
conf returns the set of possible configurations of the passed
variable set. Let us call program the state transition system
P = (conf(V ), S0, T ) where S0 ⊆ conf(V ) specifies the
initial states, T ⊆ conf(V )× conf(V ) is the transition relation
between program states induced by the program code. An
abstraction α naturally induces an abstract program P̂ =
( ˆconf(V ), Ŝ0, T̂ ) and we call conf(W ) = ˆconf(V ).

With respect to the methodology presented in the previous
section, the user inputs the program P , the set of abstract
variables W and the abstraction α. The initial states Ŝ0 are
obtained by composing two information: the thread local vari-
ables are initialized to the Java default initial values, for each
variable type; the class attributes that affect thread execution
can assume any value as initial value. Successively, an SMT-
based saturation algorithm computes the abstract transition
relation T̂ . It is worth underlying that if we had an explicit
representation of the input program P = (S, S0, T,Σ), the
algorithms needed for producing its abstract version would be
very trivial: a simple iteration over all concrete states Σ and
transitions T would suffice to build the corresponding abstract
states and abstract transitions. On the other side, getting an
explicit representation of a program P is, in general, unfeasible
or even impossible, since P can have infinite states. We do
rely, instead, on the program text to get the explicit abstract
representation P̂ from the implicit concrete representation of
P .

Example 1. Call P the simple program reported in Fig. 2.
The program has the variables V = {i, j, pc}, where pc is the
register storing the program counter values (e.g. L0,L1,L2,L3
in our example).
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Fig. 3: Discrete component of a simple Java thread

Assume that we want to abstract the program distinguishing
the cases i < j,i = j, and i > j, we generate a list of problems
passed to the SMT solver.

Notice that the SMT solver needs not to be aware of the
value of the variable pc, since the program code cannot change
directly its value. Fig. 3 depicts the finite-state discrete com-
ponent of the example thread computed combining the positive
answers from the SMT solver together with the pc value, and
then adding the corresponding (abstract) transitions. Through
the SMT solver, we rule out unreachable states (e.g. i < j
when pc = L1 or i = j when pc = L2) but we may introduce
spurious traces (e.g. (i = j,L0) → (i = j,L1) → (i >
j,L2) → (i > j,L3)), which does not correspond to any
concrete execution.

Let us introduce some formal details of the adopted method-
ology for abstracting the discrete component of a program. Let
us assume: PC ::= N | N.PC. Let us define the increment,
push and pop operations as follows:

p+ 1 =

{
n+ 1 if p = n
n.(p′ + 1) if p = n.p′

↓mp =

{
n.m if p = n
n.(↓mp′) if p = n.p′

↑ p =

{
n if p = n.m
n. ↑ p′ if p = n.p′ , p′ 6∈ N

for some n,m ∈ N, p′ ∈ PC.
From now on, assume that both the set of concrete (resp.

abstract) variables V (resp. W ) contain the special variable
pc tracking the program counter with domain dom(pc) = PC.
In order to take into account nested statements, let us assume
that PC is a stack of natural numbers, with operations push,
pop and sum defined on the rightmost position. For instance,
let pc = 4.2.3, then pc+1 = 4.2.4, ↓1pc = 4.2.3.1 and ↑ pc =
4.2. The operation ↑ 3 is not defined, since the pop operation
requires a program counter with at least two numbers.



Given any state s, let us write instr(s) or instr(s.pc)
to denote the next Java statement to be executed from that
states. Being Java a deterministic programming language,
there is exactly one instruction associated to any value of the
program counter. Assuming an asynchronous thread semantics,
a program with n threads has up to n successor states from
any given state, since in general the choice of the next thread
to run is non-deterministic.

In the following, for a state s, we may write s.x to denote
the value of variable x in s. We may also write s[x ← z] to
denote the (unique) state obtained by s replacing the current
value of x with z, provided that z ∈ dom(x). Finally, we lift
the operations on the pc variable (increment,push,pop) to the
state containing it. Being a state defined by a predicate over
variables, we may write a state in a first-order logical formula,
denoting the corresponding first-order predicate.

Let us introduce a ternary relation: NEXT(ŝ, ι, t̂) ⇐⇒ ` ŝ∧
POST(t̂)∧[ι]SMT, where ι is a Java instruction assigning a value
to a variable, or declaring a variable, and ` φ denotes that first-
order predicate φ is satisfiable for some variable assignment.
POST(t̂) returns predicate t̂ where every variable x has been
replaced with a primed copy x′. The meaning of this is that we
use x to denote the value of variable x in the program before
executing a Java statement, while x′ is used to denote the value
of variable x in the program after executing the same Java
statement. Finally, [ι]SMT computes the SMT interpretation of
the Java statement ι. Notice that statement ι can be arbitrarily
complex, since it can contain Java expressions and statements.

For instance, in Ex. 1, the relation NEXT((i <
j,L0),i++, (i < j,L1)) holds because ` (i < j) ∧ (i′ <
j′)∧ (i′ = i+ 1∧ j′ = j) holds (e.g. taking i = 1 and j = 3).
On the other side, NEXT((i < j,L0),i++, (i > j,L1))
does not hold, because for all concrete values of i and j:
0 (i < j) ∧ (i′ > j′) ∧ (i′ = i + 1 ∧ j′ = j). Notice that
the transformation applied by any Java instruction ι does not
depend on the value of the program-counter, but only depends
on the configuration of the program variables. For this reason
the program-counter component in the abstract state can be
ignored, when generating the SMT problem to solve.

Given a finite set of transitions X , we write final(X) to
denote the set of final states reachable with transitions in the
set: {t | ∃s.(s, t) ∈ X,∀s′.(t, s′) 6∈ X}.

Given an abstract state ŝ and an instruction ι, we can
compute the set of transitions departing from s when applying
ι by means of several REACH operators, one for each syntactic
category of the instructions provided by the Java language. At
the moment our implementation covers only a subset of the
Java 8 language, focusing on the core control structures, viz.
assignments, sequential execution, method-calls, if-then-else,
while, for, for-each. Due to lack of space, we show in Tab. I
an excerpt of the formally defined and implemented REACH
operators.

Notice that the REACHITE operator allows in principle, from
a same configuration, to reach some states in the then-branch
(i.e. transition (s, ↓0↓0s)), and in the else-branch (i.e. transition
(s, ↓0↓1s)). The same can happen with REACHWhile, where

both the guard and its negation can be satisfiable, starting from
the same abstract configuration. This is consistent with the
existential nature of the abstraction.

Notice also that guard γ may contain statements with side-
effects. We address this by assuming a straightforward pre-
processing at the parsing stage, rewriting the if-then-else state-
ment to first decompose the complex guard γ to a sequence of
(intermediate) variable assignments, and next a (functionally)
equivalent γ′ guard without side-effects replaces γ.

Finally, REACH> is the rule catching every instruction for
which a first-order interpretation cannot be given. This rule is
invoked also when interpreting an expression or a statement
that would fall in one of the handled syntactic categories, but
one of the variables affecting the execution of such statement
is not in the set of abstract variables W . The ratio behind
this choice is that since we don’t know the value of such
variable, the expression containing it can return any possible
value. This is an example of how the effects of our intruder
model are encoded in the computed discrete component.

Given a single Java thread P and an abstraction α, we can
now define what it means to compute its (abstract) transition
relation, given the abstract state space conf(W ) induced by
the abstraction α is the codomain of mapping α:

REACH(P, α) =
⋃

s∈conf(W )

REACH[P ](s, P )

Alg. 1 shows the procedure for obtaining a finite-state
automaton describing the discrete behavior of a single Java
thread.

Algorithm 1
function THREAD2FSA(P, S0, α)

T̂ = REACH(P, α)
Ŝ0 = α(S0)
Ŝ = Ŝ0 ∪ {t | ∃s ∈ Ŝ. (s, t) ∈ T̂}
P̂ := (Ŝ, Ŝ0, T̂ )
return P̂

Lemma 1. Algorithm 1 always terminates.

Proof. We begin by observing that the REACH operators are
recursively defined. Any sequence of recursive calls to REACH,
though, reduces the size of the statement to be processed,
with the only exception of REACHWhile. If no REACHWhile

happens in the sequence, then the sequence of recursive calls
is obviously finite.

In case a REACHWhile occurs in the sequence, we ob-
serve that the set of transitions produced at each step by
REACHWhile is monotone increasing (because at every invoca-
tion we preserve all the previously discovered transitions) and
bounded from above (because the next computed set is always
included in the set conf(W )× conf(W ), which is finite due to
the employed abstraction). This implies the statement.

V. ABSTRACTING THE TIMING OF EVENTS

To model the passage of time, we add a finite set of clock
variables C to the model. We call Γ the set of guards on



REACHAssign(s, ι) = {(s, t) | t ∈ conf(W ), t.pc = s.pc+ 1,NEXT(s, ι, t)}
when ι = instr(s)

REACHSeq(s, ι) = X ∪
⋃

t∈final(X) REACH[B′](t, B
′)

when ι = instr(s), and ι = B;B′

REACHITE(s, ι) ⊇ {(s, ↓0↓0s)} ∪X ∪ {(t, (↑↑ t) + 1) | t ∈ final(X)}
when ι = instr(s),` s ∧ γ,X = REACH[B](↓0↓0s,B),

and ι = if (γ) { B } else { B′ }
REACHITE(s, ι) ⊇ {(s, ↓0↓1s)} ∪X ∪ {(t, (↑↑ t) + 1) | t ∈ final(X)}

when ι = instr(s),` s ∧ ¬γ,X = REACH[B′](↓0↓1s,B’),
and ι = if (γ) { B } else { B′ }

REACHWhile(s, ι) ⊇ {(s, ↓0s)} ∪X ∪
⋃

t∈final(X) REACHWhile(↑ t, ι)
when ι = instr(s),` s ∧ γ,X = REACH[B](↓0s,B),

and ι = while (γ) { B }
REACHWhile(s, ι) ⊇ {(s, t) | t = s+ 1}

when ι = instr(s),` s ∧ ¬γ,
and ι = while (γ) { B }

REACH>(s, ι) = conf(W )
when ι = instr(s), and [ι]SMT is not defined

TABLE I: Subset of rules for extracting the discrete component from a Java program

clock variables, comparing clocks among themselves or with
constants. A timed automaton is a state transition system
P = (S, S0, T, C, I,G,R) such that (S, S0, T ) is a finite-state
automaton, I : S → Γ maps each discrete state to its time
invariant, G : T → Γ maps each discrete transition to one
(possibly universal) enabling clock guard, and R : T → 2C

maps each discrete transition to zero or more clock variables
to reset when taking the transition. Let us underline that Java
programs don’t handle natively clock variables. They keep
track of time passage by means of timestamps, and along
the program the latter are compare against some view of
the system clock. We assume that each thread has a clock
c(t1, t2) ∈ C for each pair of timestamp variables (t1, t2)
found by the “Annotate Timestamps” stage (cfr. Fig 1). If
the user manually specifies additional timestamp variables,
more clock variables will be generated. Intuitively, every clock
c(t1, t2) is used to keep track of the difference between
the timestamps. Thus, every clock condition of the form
c(t1, t2) ∼ k holds iff t1−t2 ∼ k, for any comparison operator
∼∈ {<,≤,=} and constant k ∈ N.

At the moment we decided to handle threads where times-
tamp variables fall in one of the following classes:
• now-timestamp: these are the timestamp variables that

are updated only for storing the value of the system clock,
• constant-timestamp: these are the timestamps that are

assigned only once along the life of the thread.
Restricting our analysis to such timestamps, helps us in
recognizing the encoded time constraints. First of all, we only
map a clock variable c(t1, t2) to timestamps t1 and t2 only
if t1 is a now-timestamp and t2 is a constant-timestamp, thus
reducing the number of clock variables in the network of timed
automata. This equals to assigning a clock variable c(t1) that
only depends on the now-timestamp, and make t2 a parameter
of the timed automaton appearing in the clock expressions.
Indeed, for any constant k ∈ N, c(t1, t2) ∼ k iff t1 − t2 ∼ k
(by definition) iff c(t1) ∼ t2 + k, and by our assumption the
expression t2 + k ∈ N is constant as well. As a consequence,
every time in the code appears the expression t1 ∼ t2 guarding

some code block, we must add the clock constraint c(t1) ∼ t2
in order to enter the abstraction of the code block, and clock
constraint ¬(c(t1) ∼ t2) in order to skip it.

From the point of view of security analysis, notice that
flagging t2 as a parameter of the timed automaton means
to give one more chance to the intruder to create a hostile
environment where the piece of code could be executed. This
in turn implies that we need to model-check all the possible
(abstract) values that parameter t2 may assume.

Note that when updating a timestamp in the Java code, the
configuration of the discrete component does not change. On
the other side, our methodology must understand when a clock
variable c(t1, t2) should be reset. Under our assumptions, since
the only timestamp to be updated is t1 and it is used for
checking the current real time, it is enough to reset clock
c(t1) the first time variable t1 reads the system clock, and
the successive times no clock reset must happen.

VI. CASE STUDY

We have implemented in a prototype tool the interactive
abstraction and verification methodology presented in this
work. In the tool the user specifies the program he/she wants
to abstract and a set of predicates over program variables. Here
we share some preliminary result, in the form of a case study
conducted trying to identify a bug that was present in a real-
time Java project. The method in Fig. 4 constitutes the body
of a Java thread part of a project named Apache Kafka2, a
popular distributed streaming platform allowing to implement
a publish-subscribe service to streams of data, and process
streams of data with an eye to fault-tolerance, as usual for
distributed algorithms.

The considered piece of code implements a poll mechanism,
where a server is periodically checked for being ready, and if
not, it is enforced to become ready. That method contained
a bug3 appearing when the parameter timeout assumes a
negative value, or a big enough value, such that expression

2Source code: https://github.com/apache/kafka
3Bug: https://issues.apache.org/jira/browse/KAFKA-4290



public void poll(long timeout) {
// poll for io until the timeout expires
long now = time.milliseconds();
long deadline = now + timeout;

while (now <= deadline) {
if (coordinatorUnknown()) {

ensureCoordinatorReady();
now = time.milliseconds();

}

if (needRejoin()) {
ensureActiveGroup();
now = time.milliseconds();

}

pollHeartbeat(now);

long remaining = Math.max(0, deadline - now);
client.poll(Math.min(remaining,

timeToNextHeartbeat(now)));
now = time.milliseconds();

}
}

Fig. 4: Example of real-time Java code with security bug

now + timeout overflows and becomes smaller than now.
The bug was found “out of the box”, by the programmers’
own admission, and we claim that our methodology could have
helped in finding it if employed in a systematic investigation
of methods and their correctness and security specifications.

In our case study, the thread security requirement is an
availability requirement, that can be described as follows:
whenever the thread exits, the server must be in its ready state,
denoting that the service is available to the other threads in
the system.

To this aim, the user instruct the tool to abstract the add
abstract variables is_ready and coordinator_known
to the system. Then the user specifies the following first-order
interpretation of method ensureCoordinatorReady():
(assert (= is_ready_1 true)), while method
coordinatorUnknown is abstracted as follows: (assert
(= return coordinator_known)), where return
is a special SMT variable used to store the result of invoking
the method invocation. All other methods are abstracted with
a first-order tautology, meaning that they have no effect on
variables is_ready and coordinator_known. Finally,
the user specifies that he/she wants to verify a system with
only the poll thread. The tool automatically recognizes two
timestamps, viz. deadline and now, the former being a
constant-timestamp and the latter being a now-timestamp.

Fig. 5 reports a graphical representation of the timed
automaton corresponding extracted from thread poll. Note
that the actual state space of the discrete component is

@0

@1

[ now := 0 ]

@2

long deadline = now + timeout;

@2.0

[now <= deadline]

@3

[now > deadline]

@2.0.0.0

if (coordinatorUnknown)

@2.1

endif@2.0.0.1

ensureCoordinatorReady;

@2.0.0.2

endif

@2.1.0.0

if (needRejoin)

@2.2

endif@2.1.0.1

ensureActiveGroup;

@2.1.0.2

endif

@2.3

pollHeartbeat(now);

@2.4

long remaining = Math.max(0, deadline - now);

@2.5

client.poll(Math.min(remaining, timeToNextHeartbeat(now)));

@2.6

end while

Fig. 5: The extracted timed automaton

given by 204 states, i.e. 4 configurations of the two boolean
variables is_ready and coordinator_ready, times the
17 values of the program-counter register, times the 3 possible
abstract values of parameter deadline: deadline < 0,
deadline = 0, and deadline > 0. In the figure we
only make explicit the value of the program-counter register,



for the sake of readability. The timed automaton contains one
clock variable now, and one parameter deadline.

After the parse stage, the tool takes 7.19 seconds to generate
a Uppaal representation of the timed automaton from the poll
thread on an Intel i7 machine with 8 cores and 16GB of RAM.
For solving the SMT problems we used the Z3 SMT solver,
that was invoked 204 times. The security requirement can be
encoded with the following TCTL formula: AF (is_ready
= true). Uppaal takes less than a second to find the follow-
ing counter example path: (σ, pc = @0) → (σ, pc = @1) →
(σ, pc = @2) → (σ, pc = @3), where σ = deadline <
0 ∧ is ready = false ∧ coordinator known = true, and
a simple code inspection allows to understand that the found
counterexample is not spurious, i.e. is not added by the
abstraction process, but it can happen with concrete executions
of the method.

VII. CONCLUSIONS

This paper describes a methodology aiming at model check-
ing some safety and security requirements against pieces of
Java code. The methodology can extract a network of timed
automata model of the Java code under analysis, and through
an interactive workflow, can accept information from the user
that drives the process of generating an existential abstraction
of the checked code. The process of extracting a model from
Java code is cumbersome and error-prone, thus we claim that
our methodology can be helpful if plugged into the usual
software engineering and re-engineering processes, to prove
that existing code fulfills a set of safety and security speci-
fications, provided that the latter can be expressed using the
temporal logic TCTL. The presented methodology has been
implemented in a prototype tool. The tool implements several
steps of static analysis, extracting a piece of information at
each step.

Our work is original in several aspects: first, similar works
extracting timed automata from code deal with control flow
abstraction [25], [7], [6] and largely overapproximate the
visited program states, which in turns means the model-
checking phase is not successful because of the great number
of spurious counter-examples introduced. Allowing the user
to decide which variable configurations to track, he/she is in
power to find the best trade-off between model refinement
and feasibility of model-checking. Second, existing approaches
for model-checking real-time Java code only focus on the
analysis on best-/worst-case execution times, not considering
the problem of checking the correctness of the software w.r.t.
temporal, safety or security requirements. We aim at filling
this gap. The approach we propose needs more experimental
validation and must be tested for scalability when analyzing
complex scenarios with several threads, sharing variable or
synchronizing with the mechanisms provided by the Java
language. Also, model checking more complex safety and
security specifications should be tested. Finally, techniques for
abstracting clocks from source code are needed, since existing
ones do not apply to this context [23], [30].
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