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Abstract—Modern software development practices have shifted
to a fast and agile release process. Software is automatically
compiled, tested, verified, and shipped to the users. Formal meth-
ods and their implementation in tools are difficult to integrate
into such a process. Existing techniques try to close this gap by
providing static analysis tools that can be run along with the test
harness. However, these approaches require a formalization of the
full system. This is not always possible since the environment,
in which the program is run, is not known a priori. In this
paper, we present a technique that combines static and dynamic
analysis to define formal tools that are amenable to automatically
recover the program state at runtime when errors are detected.
Our proposed approach introduces an Assertion Library and
an Assertion Plugin. The library enables developers to assert
properties of their program and to verify them at runtime. The
plugin is used by the build system of a program to generate an
abstract model of the source code and attach it to the artifact
produced. Furthermore, during the generation of the model, it
verifies that no violations of the assertions are identified. When
a violation is found either at compile- or run-time, a meaningful
counter-example is presented. This can be used by developers
to improve the code in the next release cycle. Furthermore,
our approach tries to automatically recover the correct system
behavior based on the violated assertion. For the evaluation, we
have created a dataset that consists of 100 bugs collected from
20 open source Java projects. We use the dataset to verify the
ability of our approach to identify and recover from the errors.
The results of our experiments show that our approach is able
to identify 100% of the errors and automatically recover 84%
of them. Furthermore, the runtime overhead introduced by our
approach has a median value of 119.5ms.

I. INTRODUCTION

Due to the fast pace of the software market, companies
need to release new features and updates frequently and fast to
stay competitive. Furthermore, developers need to analyze and
monitor the usage of their software products to derive data that
can be used to improve the software and increase their revenue
stream. Therefore, the process used to develop software has
switched to fast and agile techniques. These techniques aid
developers to automate some of their activities with the benefit
of allowing them to focus on implementing new features. For
this reason, software companies endorse the automation of
building, testing and deploying software systems, such as done
with modern continuous delivery and continuous integration
(CI/CD) pipelines.

Formal methods and their implementation in tools are
difficult to integrate into such a fast and mostly automated
development process. With the current formal techniques,
such as [1]–[6], developers have to manually define invari-
ants and properties of their code and model them in other
languages and/or tools that cannot easily be integrated into
CI/CD pipelines. This affects the productivity of the software
development teams and it may discourage them to apply
formal verification techniques. Instead, most teams rely only
on testing to verify the correct behavior of a system. Existing
researches, such as [7]–[10], try to close this gap by using
static analysis [11] to automatically build and verify an abstract
model of the code. This type of techniques perform a symbolic
execution or an abstract interpretation of the source code to
automatically find specific types of errors or code smells in the
implementation [12]. Big software companies, such as Google
[13], [14], Facebook [15], [16], and Microsoft [17], [18]
developed multiple static analysis tools to use in their software
release pipelines. These techniques extracts models from the
code that they use to generate tests that cover different types
of properties. For instance, PEX [3], developed by Microsoft,
collects path constraints with a static analysis and uses them
to generate tests to achieve a high branch coverage. Similarly,
concolic testing [19] performs symbolic execution of the
code to generate tests that identify data race errors. However,
existing static analysis approaches have some drawbacks. First,
they fail to fully model the runtime behavior of the code and
second, they require a formalization of the full system, which
is not always feasible. With the current agile development
and microservices architecture, it is not always feasible to a
priori formalize the environment in which a program is run or
the external libraries used, making such approaches ineffective
[20]. Therefore, other formal techniques, e.g., [21]–[23], focus
on protecting the application at runtime. Developers define the
conditions in which their software works and these techniques
monitor the application at runtime to discover (and block)
any deviation from the specified behavior also in case of
unforeseen situations due to the environment. However, they
fail to recover the correct program’s execution behavior.

For instance, Listing 1 presents an excerpt of the method
poll taken from the Apache Kafka source code that is
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1 public void poll(long timeout) {
2 long now = time.milliseconds();
3 long deadline = now + timeout;
4 while (now <= deadline) {
5 ...//important code which is expected to
6 //be executed at least once
7 }
8 }

Listing 1: Source code of the method poll() from the class
WorkerCoordinator of the Apache Kafka project.

responsible for the issue KAFKA-4290.1 If the method is
called with (i) any negative number or (ii) a big enough
positive number, its execution will cause a failure in the
program because the content of the while loop is expected
to be executed at least once. With the existing techniques, if
one of the aforementioned conditions occurs, the application
stops its execution with an error without pinpointing the root
cause that triggered the error, i.e., the wrong value for the
timeout variable. More importantly, they do not provide
any self-healing mechanisms that automatically recover the
program from the error, requiring developers to fix the problem
in the next release cycle.

In this paper, we present a technique that overcomes
the aforementioned limitations combining static and dynamic
analysis to aid developers assuring runtime properties of their
programs. Our technique automatically injects a verification
framework into the executable of the system that discovers
errors at both, compile- and run-time. The major advantage in
contrast to existing approaches is that it enables the program to
automatically recover from the errors that could happen at run-
time. Our approach is based on two different artifacts, namely
an Assertion Library and an Assertion Plugin. The Assertion
Library enables developers to assert properties directly in the
source code that must hold during the program execution.
Furthermore, developers can combine symbolic and concrete
values of variables while defining their invariants. First, the
Assertion Plugin creates an abstract model of the source code
and attaches it to the executable produced by the build system.
Second, it verifies all the properties defined by the developers
and stops the build process if it identifies that some properties
cannot be satisfied in the given source code. Finally, if no
violations are identified, it inserts a verification engine into
the executable that verifies the properties at runtime. The
runtime verification can be configured with filters that enable
or disable the verification of specific properties. Compared to
alternative techniques, such as Java PathFinder [4] or Larva
[24], developers do not require a special Java Virtual Machine
(JVM) to run the verification. They can ship their artifacts
with the verification of such properties directly to the end
users. Moreover, in contrast to existing similar techniques,
such as JML [1], our approach is able to automatically provide
a recovery strategy to resume the expected execution behavior
when an error has been detected at runtime. This favors the

1https://issues.apache.org/jira/browse/KAFKA-4290

end-user to not suffer from errors that can be fixed by the
developers in the next release cycle. Furthermore, we provide
the possibility to define invariants using both, symbolic and
concrete variables, whereas other approaches, such as JML
[1] or ESC/Java2 [25], uses only symbolic variables at compile
time and concrete variables at runtime.

We have implemented our approach in a prototype tool and
we have applied it to a dataset of 100 bugs collected from 20
open source Java projects. In our evaluation, we answer the
following three research questions:

RQ1: Is our approach adequate to identify errors in the
source code?

RQ2: How many errors can the recovery strategy solve?
RQ3: How much runtime overhead does our approach in-

troduce?

The results of our evaluation show that our prototype
manages to discover all errors from the given specifications
and recovers 84% of them, requiring in median 119.5ms to
identify and repair an error.

In summary, this paper makes the following contributions:

• A recovery strategy to assure a correct runtime behavior.
• An approach to design formal tools for modern software

development techniques.
• A dataset of 100 bugs collected from 20 open source Java

projects.

The remaining of the paper is organized as follows: Section
II details our approach and we present the implementation
details in Section III. In Section IV, we evaluate the approach
and we discuss implications, as well as threats to the validity
of our experiments in Section V. Section VI gives an overview
of the related works and Section VII concludes the paper.

II. APPROACH

In this section, we present our approach to identify and
recover errors in programs. Figure 2 shows an overview of
our approach consisting of three steps. In the first step, the
developers write the code of their application along with its
specification using our Assertion Library. Upon committing
their work into the repository, the CI/CD pipeline starts. In
the second step, the Assertion Plugin intecepts the compilation
of the source code and creates an abstract model of the code
that is integrated into the final artifact. The Assertion Plugin
performs a symbolic execution using the abstract model of
the code to verify whether the specifications expressed by the
developers are valid in the source code. Finally, a final artifact
is produced and it contains the program, the abstract model of
the source code, and the code that monitors the specifications
expressed by the developers at runtime. When a property
does not hold, the developers are notified with the cause
that invalidated the specifications. Furthermore, developers
can enable the recovery strategy offered by our approach to
resume a correct program execution when errors are detected
at runtime.
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Fig. 2: Overview of our approach

1 public void poll(long timeout) {
2 long now = time.milliseconds();
3 long deadline = now + timeout;
4 //for all value of timeout, now must be <=

deadline at this execution point
5 AssertLibrary.ensure(
6 forAll("timeout", leq("now", "deadline"))
7 );
8 while (now <= deadline) {
9 ... //important code which is expected to

10 //be executed at least once
11 }
12 }

Listing 2: Extension of Listing 1 with an assertion of the
expected behavior.

A. Development Step

The first step requires to slightly change the normal work-
flow of a developer. Usually, developers write the code and the
test harness of a given feature. Existing testing frameworks,
such as JUnit or NUnit, offer an assertion interface where
developers can assert conditions (i.e., invariants) on the result
of a method call or on the value of a variable. If the condition
does not hold, an exception is thrown stopping the execution
of the tests with an error message. Our approach requires
developers to complement (or replace) the test harness with
assertions that state the properties of a feature directly in
the source code. This makes the assumptions taken by the
developers when they write the code explicit. As a side effect,
this can also help the documentation of the source code [26].

Multiple logics can be employed to express different types
of code properties, such as First Order Logic (FOL) [27],
Linear Temporal Logic (LTL) [28], or Past/Future Time LTL
(ptLTL/ftLTL) [29]. Our approach provides an Assertion Li-
brary that gives developers an interface to express their spec-
ifications with different logics. The library allows to declare
both, symbolic and concrete variables in the formulae allowing
a more precise analysis [30], [31]. A symbolic variable is
a variable that represents a set of possible values for that
variable, rather than a single one. A concrete variable, instead,
represents the precise value that is stored in the variable at

some point in the execution of the program. Our approach
considers variable names between quotation marks as symbolic
variables and without quotation marks as concrete variables.

For instance, Listing 2 extends the example of Listing 1 with
a formula in FOL which asserts the implicit property that the
while loop should be executed at least once. For declaring this
fact, a developer could write a formula which asserts that the
while-condition is always verified before entering the loop. In
our example, between Line 5 and 7, we express that for each
value of the timeout parameter, the value of now must be
less or equal to the value of deadline. For this assertion,
only symbolic variables are used.

B. Build Step

After the changes are stored in the repository, the CI/CD
pipeline starts to build and deploy the application. In this
step, the Assertion Plugin intercepts the compilation of the
source code and generates an abstract model of it. The model
is then integrated into the final executable that is deployed in
production. Furthermore, it injects a formal verification frame-
work that monitors the application to verify the assertions of
the developers at runtime. The Assertion Plugin performs an
abstract interpretation and a symbolic execution of the code to
generate models amenable to the verification of the different
formulae expressed by the developers using the Assertion
Library. Depending on the family of the formulae used in
the assertions, different models of the code can be created
to verify their satisfiability, such as Kripke structure, SMT
problems, or automata. Furthermore, when the testing phase
is executed by the build system, the Assertion Plugin verifies
the formulae written by the developers. For the verification,
it negates the assertion and checks its validity in the model.
If the negation is satisfiable in the model, it means that the
assertion is not valid in the source code and therefore, the
build is halted. Along with the error information of which
assertion failed, the Assertion Plugin also reports the counter-
example that falsified the assertion. The counter-example helps
developers to spot the cases in which the program fails.

When the Assertion Plugin processes the code presented in
Listing 2, it recognizes that the formula at Line 6 specifies
some properties and, therefore, it verifies it. First, it negates
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the formula rewriting it from ∀timeout.(now <= deadline)
to ∃timeout.(now > deadline). Then, it verifies the satisfia-
bility of the negation in the abstract model generated from the
source code. Note that the formula ranges over the timeout
variable, which is a symbolic variable that is not used in the
remainder of the formula. Using the abstract model of the
code during the verification of the formula, each variable is
internally unrolled with its own definition collected through
the symbolic execution. This makes explicit that changing the
value of timeout changes the value of deadline, i.e., the
following formula is verified:

∀timeout.∀now.∀deadline.( now ≥ 0
︸ ︷︷ ︸

from time.milliseconds()

∧

∧ deadline = now + timeout ∧ now ≤ deadline)

Since the negation of the formula holds in the model, the build
is halted and an error message is reported to the developers.
Furthermore, a counter-example is reported that helps the
developers understand the situations in which the code fails
their assumptions. For instance, in the example of Listing 2
the following assignment is reported:

timeout = −1
now = 1
deadline = 0

C. Monitoring Step

If the application passes the build, it is deployed and
executed. Since different environments might have different
requirements, which properties are verified at runtime must
be configurable on demand by the developers. Therefore, the
runtime verification engine inserted into the executable can
be configured with filters, via parameters or environmental
variables, when the application is launched. When the ex-
ecution of the application reaches an assertion, the monitor
first verifies whether the assertion is eligible to be processed
in accordance with the configured filters. If so, it feeds the
concrete values of the variables into the formula. Then, the
verification is performed with the negation of the asserted
formula, as explained in Section II-B. If the assertion does
not hold, the counter-example is generated and an exception
is thrown by the verification engine.

If the developers enable the recovery strategy offered by our
approach, the code is internally (and automatically) rewritten
and the exception is not thrown. To resume a correct program
execution, the recovery strategy tries to change the memory
state, i.e., it changes the values stored into the variables,
with values that satisfies the expected execution behavior. To
generate the memory values for all the variables that appear
in the formula, the recovery strategy weakens the specification
used by the developers. Since the original specification cannot
be respected by the current state of the program, the recovery
strategy relaxes the formula iteratively in several steps. At each
step, the recovery strategy relaxes the formula replacing one
universal quantifier with an existential one and then it verifies
if the new formula can be satisfied. This approach iterates
until either, the relaxed formula is satisfiable or the formula

1 public void poll(long timeout) {
2 timeout = timeout < 0 ? 0 : timeout;
3 long now = time.milliseconds();
4 long deadline = now + timeout;
5 try {
6 AssertLibrary.ensure(
7 forAll("timeout", leq(now, "deadline"))
8 );
9 } catch(AssertionLibraryException ex){

10 deadline = ex.aCorrectValueFor("deadline");
11 ...
12 }
13 while (now <= deadline) {
14 ...//important code which is expected to
15 //be executed at least once
16 }
17 }

Listing 3: Extension of Listing 2 with an example of how the
code is internally rewritten by the recovery strategy.

cannot be relaxed any further. Although this relaxation changes
the specification, the results are an over-approximation of the
original specification, i.e., we admit more behavior than those
possible, which should still yield a state in which the program
can successfully progress its execution. In the case that also the
relaxed formulae cannot be satisfied, an exception is thrown
preventing the program to further continue with an invalid
state.

For example, Listing 3 extends Listing 2 preventing the
timeout parameter to be assigned with a negative value,
in Line 2. This only covers the first case in which the method
exposes the issue KAFKA-4290. In this example, when the
monitor verifies the assertion, it returns a counter-example that
shows the second erroneous case, i.e., the possibility of an
overflow, in which the method exposes the known issue, such
as the following:

timeout = 9223372036854775807
now = 1542616942559
deadline = −9223370494237833250

If the developers have enabled the recovery strategy, the
code is automatically rewritten similarly to the one presented
between Lines 5 and 12. The verification of the formula is
encapsulated in a try-catch block. Here, the formula uses the
variable now as a concrete variable. Therefore, it computes the
satisfiability of formula using the value held by the variable
now at that execution point instead of using a symbol as
its value. The catch block, in Line 9, tries to resume a
correct state of the program invoking the relaxing procedure
aforementioned that searches for a valid value for the variables.
In this example, the recovery strategy relaxes the formula
from ∀timeout.(now <= deadline) to ∃timeout.(now <=
deadline), which is satisfiable with the following assignments:

timeout = 1
now = 1542616942559
deadline = 1542616942560
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In Line 10, an example of the recovery for the
deadline variable is presented. Here, the variable is as-
signed with the value found using the recovery strategy,
namely 1542616942560. In the case where no values can be
found, an exception is thrown stopping the program execution.

III. IMPLEMENTATION

In this Section, we present the details of the implementation
of our approach, which is publicly available [?]. Since we use
Java as target language, we decided to define the Assertion
Plugin in terms of an Apache Maven2 plugin, a well known
build system for Java projects. Furthermore, we decided to
provide an approach to automatically repair programs based
on state repair. In contrast to behavioral repair, our approach
do not alter the source code of the program to remove
the error. State repair automatically modifies the execution
state at runtime to remove the error. Using the categorization
presented by Monperrus [32], our implementation uses abstract
behavioral models as oracle to identify bugs at runtime and
uses a rollfoward (or forward recovery) strategy to repair the
state.

Our approach relies on the implementation of the approach
presented in [8] to extract the abstract behavioral models
that are used to identify the errors. Although existing similar
approaches, i.e., JML [1] and ESC/Java2 [25], creates a
behavioral model of the code at runtime, they only reason over
concrete values limiting their expressiveness power. For this
reason, we decided to do not extend them but and develop
our own toolset. This also represent an interesting future
direction for research where the Pre- and Post conditions,
offered by these approaches, are combined with abstract
behavioral models extracted from an abstract interpretation
of the code. For the implementation of the forward recovery
strategy, we relax the assertion that violates a property in
the abstract behavioral models to find a new state that could
resume a correct program execution. Although we performed
an over-approximation of the original intended behavior, other
researches, such as Sidiroglou et al. [33], have shown that
this approach can avoiding a complete crash of software
applications.

In Figure 5, we present an architecture overview of our
implementation. The source code is annotated by developers
with calls to the Assertion Library that express the assertions
of the expected behavior, as presented in Listing 2. When the
build system starts the code compilation, the Assertion Plugin
starts the analysis of the source code to reverse engineer the
abstract behavioral models. For this task, we used the approach
presented in [8], which automatically reverse engineers SMT
models from Java code. We slightly modify the approach to
also model integer operations. In this extension, we provide a
further mapping between mathematical operations over integer
variables and SMT theories, which follows straightforwardly
the approach presented in Algorithm 1 of [8]. After the
analysis, the extracted models are marked as resources to

2https://maven.apache.org/

be included in the final executable. Then, the build system
proceeds to compile the code producing the .class files. In this
step, the compilation requires the Assertion Library to resolve
the assertion calls introduced by the developers. Since the li-
brary exports method calls that accept specific parameter types
that can be called only in a specific context, we exploit the
Java compiler to verify that the formulae are well-formed, i.e.,
syntactically correct. After the compilation, the build system
starts the packaging phase where .class files and resources are
packed inside a jar file. In this phase, the Assertion Plugin
rewrites the bytecode of the classes introducing our repair
strategy. It looks for the method calls to the functions exported
by the Assertion Library and rewrites them linking the call
to the correct abstract behavioral model to use at runtime
to verify the given assertion. The method ensure() of the
Assertion Library is responsible to translate the formula in
input into a First Order Logic (FOL) formula. Moreover, this
method uses Z3 version 4.8.3 to verify the FOL formula holds
onto the model. Finally, the Assertion Plugin rewrites the calls
to the Assert Library functions encapsulating them with a
try/catch block, as depicted in Listing 3. Afterwards, the build
system proceeds and finishes the packaging of the application
producing the executable which is comprehensive of our repair
approach.

IV. EVALUATION

In this section, we present the experiments we have per-
formed to evaluate our approach. They aim to answer the
following three research questions:

RQ1: Is our approach adequate to identify errors in the
source code?

RQ2: How many errors can the recovery strategy solve?
RQ3: How much runtime overhead does our approach in-

troduce?
The next subsections describe the setup of the experiments

and present the results for each research question.

A. Setup

We used the implementation of our approach to evaluate a
dataset that comprises 100 errors mined from 20 open source
Java projects. We used the same project selected for the studies
presented in the previous chapters and, therefore, the projects
differ in vendor, size, and domain of use. Table I presents
some descriptive statistics of the selected projects. Over all
projects, we selected the 100 errors from 1,064,279 distinct
Java methods out of which 466, 218 contain a time related
operation and 518, 392 contain an integer related operation.
We selected 50 time related errors and 50 integer related errors.
The 50 time related errors have been randomly selected from
the dataset of error presented in Chapter ??. The selection of
the remaining 50 integer related errors was performed starting
from selecting all the classes that contain at least one operation
over integer variables. From this set of integer operations, we
randomly selected the classes that contain those and manually
verified the code. We iterated this process until we identified
50 methods that do not correctly handle integer operations.
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Fig. 5: Architectural overview of the implementation of our approach.

TABLE I: List of Java projects used to generate our dataset
together with their number of methods, time methods, integer
methods, and number of bugs.

Name # Methods #T. Methods #I. Methods # Bugs
ActiveMQ 54,026 12,583 27,048 18
Activiti 15,373 6,034 5,631 0
Airavata 73,864 39,858 24,361 3
Alluxio 25,197 13,570 12,802 4
Atmosphere 4,106 1,626 1,298 0
AWS-SDK-Java 205,438 150,932 74,175 0
Beam 31,989 7,832 15,193 0
Camel 129,811 34,760 43,329 8
Elastic-Job 2,493 637 353 0
Flume 6,862 2,429 3,854 4
Hadoop 171,189 40,173 119,166 23
Hazelcast 59,595 20,741 26,249 10
Hbase 129,405 81,747 99,540 13
Jetty 25,179 8,057 11,535 8
Kafka 14,129 5,158 7,418 0
Lens 10,614 3,917 3,426 0
NanoHTTPD 710 205 331 0
Neo4j 61,631 18,595 26,630 3
Sling 38,018 15,489 13,311 6
Twitter4j 4,650 1,875 2,742 0
SUM 1,064,279 466,218 518,392 100

This balances the different types of errors in our dataset.
Afterwards, for each of the 100 faulty methods of the dataset,
we created a single unit test that highlights the error in the
given method. For each test, we set a timeout of 5 seconds.
Finally, we changed the build scripts of the projects to leverage
the library and plugin offered by our approach.

All experiments have been conducted on a laptop with a
2.5 GHz Intel CPU and 16 GB of physical memory running
macOs 10.13.6.

B. RQ1: Bug Identification

With the first experiment, we want to investigate if our
approach is adequate to discover the errors in our dataset. First,
using our Assertion Library, one author of the paper manually
annotated the classes that contain the errors of our dataset.
She annotated the classes with assertions that specify the
(assumed) expected properties of the source code. We inserted
a single assertion for each error. Then, another author of
the paper checked the assertions, verifying that they correctly
express the correct behavior of the method in which they were
inserted. Second, for each of the 20 projects, we executed

the build of the system to create the models and inject the
verification framework. Finally, we launched the execution of
the 100 tests that we have created. In this manner, we verified
the identification of errors at compile time during the build
and at runtime during the tests execution. Notice that in this
experiment we disabled the recovery strategy.

The execution of the build shows that all 100 errors were
correctly detected at compile time. Furthermore, all tests
failed due to the exception thrown by our prototype when
the assertions are checked at runtime. These results confirm
that our implementation is able to identify violations of given
specifications.

C. RQ2: Recovery

To answer this research question, we investigated the pri-
mary ability of our approach, i.e., to automatically recover
the internal state of the program in case of a violation of
the specifications. First, we activated the flag in the Assertion
Plugin that enables the insertion of the recovery strategy in
the final executable. Then, we compiled the projects and ran
the tests again so the monitor could identify the errors and
we counted how many of them can be successfully recovered.
The results show that 84 methods that contain an error of
our dataset could successfully pass their tests, resulting in a
recovery rate of 84%.

We also investigated the reasons why the recovery strategy
failed to recover a proper state in the remaining 16 methods.
We first logged the memory state suggested by the recovery
strategy. Then, we used it to manually analyze the code and
understand the reasons for the failures. We discovered that in
9 cases, the problem was due to the final keyword of the
Java programming language. Once a field attribute is declared
final, its value becomes a constant and the Java Virtual
Machine (JVM) does not allow to change it. Therefore, the
recovery strategy, although it was able to suggest a correct
memory state, it was not able to enforce it, due to this
restriction of the JVM. In the remaining 7 cases, the over
approximation, due to the relaxation of the specification,
produced a memory state that did not solve the issue.

With further inspection, we discovered that both types
of failures of the recovery strategy could be overcome by
changing how the specifications are written. In the case of
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1 public void poll(long timeout) {
2 long now = time.milliseconds();
3 long deadline = now + timeout;
4 AssertLibrary.ensure(
5 forAll("timeout", and(
6 leq(now, "deadline"), gt("timeout", 1)
7 )));
8 while (now <= deadline) {
9 if(timeout == 1)

10 return;
11 ... //important code which is expected to
12 //be executed at least once
13 }
14 }

Listing 4: Example that showcases how to aid the recovery
strategy to identify a correct memory state.

TABLE II: Descriptive statistics of the dataset used in our
experiments with Source Line Of Code (SLOC), number of
statements (STMS), Cyclomatic Complexity (CC), and the size
of the generated models (MS).

SLOC STMS CC MS
Min 43.0 11.0 5.0 10.0
Median 188.0 95.5 43.5 27.5
Average 322.1 167.3 76.9 31.5
Max 1943.0 1170.0 493.0 114.0
Overall 32206 16734 7686 3148

final attributes, a developer can add an additional assertion
before the value of the attribute is set in the constructor. This
assertion can verify that the attribute is not assigned with a
wrong value, which will later invalidate the other specification.
In the case where the recovery strategy does not correctly
identify a valid memory state, the specification can be enriched
with further details about the expected execution. This tightens
the gap between the over approximation and the real correct
execution, producing better results.

In the example of Listing 3, the recovery strategy would
assign the value 1 to timeout, as we have discussed in
Section II-C. However, if the same assertion is used with
thes code presented in Listing 4, the recovery strategy will
not fix the program execution. The memory state with the
value 1 for the timeout variable is invalid because the ex-
ecution would stop before reaching the important instructions
following the if statement. To solve this problem, the assertion
can be enrich with an additional constraint that enforces the
variable timeout to be greater than 1, as presented by
Listing 4 between Line 4 and 7. The assertion can be read
as ∀timeout.(now ≤ deadline) ∧ (timeout > 1). This
specification is stronger than the previous one and it permits
the recovery strategy to produce a memory state which enables
the correct execution of the method, e.g., timeout = 2.

From this experiment, we can conclude that our recovery
strategy can successfully recover a correct program execution
for 84% of errors encountered. However, we also discovered
that its success depends on how the specifications are formu-
lated.
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Fig. 7: Boxplot showing the time in ms to identify and recover
errors.

D. RQ3: Runtime Overhead

For this research question, we studied the impact of our
approach on the runtime performance. We used our dataset
composed of 100 errors. Table II shows some descriptive
code statistics of the classes that contain the errors of our
dataset. We report the statistics per class and not per method
because the tests that trigger the errors also perform calls to
other methods of the class that contains the faulty method.
Moreover, only a single assertion per test is executed. The
number of Single Line Of Code (SLOC) varies from 43 to
a maximum of 1943, averaging at roughly 322 lines of code
per class. The median shows that half of the classes contain
around 188 lines of code. The number of statements (STMS),
ranges from 11 to 1170, with an average of 167.3 statements
and a median of 95.5 statements. The Cyclomatic Complexity
(CC) ranges from a minimum of 5 to a maximum of 493 with
an average and a median of 76.9 and 43.5, respectively. The
size of the models (MS) is computed in terms of the number
of declarations in the SMT-Lib notation of the models. The
generated models vary from 10 to 114 declarations, while the
median and the average are 27.5 and 31.5, respectively.

We ran each of the tests that trigger the 100 errors of our
dataset. For each test execution, we computed the time our
approach requires to identify the bug (Identification) and the
time the recovery strategy requires to produce the memory
values (Recovery). We ran each test 5 times and averaged the
results. We report the results of our experiments in Figure 7.
The time required to identify an error ranges from 21ms to
1058ms, with a median value of 87ms. Furthermore, from
the interquartile range of the boxplot we can see that for
the majority of the cases, the time required to identify an
error ranges between 21ms and 145ms. In contrast, JML [34]
requires between 6ms to 215ms to verify the validity of a
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single Java statement.
The recovery strategy has a median time lower than the

identification of errors, namely 32.5ms. However, it has more
variance in the time required to compute the correct values
for the memory state, ranging from a 17ms to 1704ms.
This result is expected since the recovery strategy proceeds
iteratively to weaken the formula. Depending on the number
of steps required by the recovery strategy to find the correct
memory state, multiple calls to Z3 are performed varying the
time required to return the results. To verify our hypothesis,
we manually investigated the reasons of this behavior. We
profiled our prototype tool and we discovered that 93% of
the time is spent in reading and parsing the output of the
Z3 process. Whereas for the identification of errors, we read
only the exit code of the Z3 process without parsing the
output. Furthermore, the maximum number of weakening steps
required by the recovery strategy was 2. We also investigated
the large number of outliers in the Identification boxplot. We
collected the models of these errors and manually verified
them with Z3. We discovered that Z3 requires more than half
a second to verify them although they have a size between 21
and 40 declarations. The errors discovered with such models
are due to overflows and Z3 requires extra time to verify this
type of property.

Based on these results, we conclude that our approach for
detecting errors at runtime adds a median overhead of 87ms
which is comparable to existing approaches. Enabling the
recovery strategy adds another median overhead of 32.5ms
to the runtime per assertion.

V. DISCUSSION AND THREAT TO VALIDITY

In this section, we discuss the outcome of our evaluation and
its implications for researchers and practitioners. Furthermore,
we discuss the potential threats to validity of our empirical
studies.

A. Summary of the Results
With our three research questions, we studied three aspects

of our approach. The first and second research questions
investigated the primary purpose of our approach, i.e., to
identify and overcome errors in software systems. The third
research question studied the runtime overhead imposed by
our technique while monitoring the application. The results
show that our prototype tool is able to identify all the errors
in our dataset and to automatically recover a correct execution
behavior for 84% of them, introducing a median runtime
overhead of 119.5ms per assertion. We can conclude that our
approach is adequate to discover errors in the source code
and automatically overcome them when they occur at runtime
with an adequate overhead. This has several implications
on researchers and developers as discussed in the next sub-
section.

B. Implications of the Results
Concerning the implications on the research in this area, we

presented a general approach that aims at supporting develop-
ers to use formal methods for developing software systems.

Our approach gives developers the control where to insert and
check an assertion. Other approaches, such as JML [1], can
follow our methodology so developers can better control and
lower the runtime overhead added by the formal verification.
More importantly, the results of the second research question
show that our recovery strategy can effectively help overcome
errors during the program execution. Other approaches can
benefit from our rollforward strategy and implement a similar
recovery strategy into their toolkit. Moreover, we present our
approach for the Java programming language as a case study
to show its applicability. Other researchers can adapt our
approach to other modern programming languages because it
relies on two artifacts: a runtime library and a compiler plugin.
Modern programming languages and their toolkits provide
both artifacts, making it reasonably easy to adapt our approach.
This would enable the possibility to study the effectiveness of
our recovery strategy in conjunction with dynamic languages,
such as JavaScript, or concurrent languages, such as Rust.

Our results have also several implications for developers.
Our approach gives developers the control where to insert
and check an assertion. With that, they can decide which
statements in the code should be formally verified at compile
and runtime. Such flexibility is currently not supported by
existing approaches, such as JML [1] and ESC/Java2 [25],
where all code statements are always verified. In addition, the
results of the first research question show that our approach,
given the right assertion, is able to identify all errors. The
results of the second research question show that our ap-
proach allows developers to ship software systems that can
automatically recover from errors at runtime. Although we
currently support only few types of errors, we showed that
with our recovery strategies, users will not encounter failures
while developers are notified with the error information and
the counter example generated by our approach. Developers
can use this information to fix the problems in the next release
cycle. While our results show the potential of our approach,
more types of errors need to be supported in the future.
Furthermore, the results of the third research question show
that the runtime overhead added by our approach is acceptable
compared to existing approaches, such as [34]–[36].

C. Threats to Validity

In the following section, we discuss threats to the internal
and external validity of our evaluation, and how we addressed
them in our experiments.

Internal Validity. One threat to the internal validity con-
cerns the reliability of the prototype tool. We mitigated this
threat with manual and unit tests. Furthermore, we designed
the first research question to investigate the correctness of
our implementation with a dataset that consists of real world
errors. The application of our approach to the dataset managed
to discover all errors, mitigating this possible threat. Another
threat to the validity of our study is that we have manually
created the assertions used to identify, and later overcome,
the errors in the source code of the projects. We mitigate this
thread by having two different authors of the paper writing
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and then reviewing the assertions. The assertions should be
representative of the invariants of the code since all the
errors were discovered and only in few instances the recovery
strategy was not able to overcome them. Furthermore, this
shows that also with a naive knowledge of the system, a
simple assertion is adequate to discover and recover errors
in the systems. Further studies will be devoted in mining the
test cases of the project and use invariant detector tools, e.g.,
Daikon [37], to automatically infer the assertions and mitigate
this threat. Moreover, future work will also leverage failed test
case execution to generate further assertions.

With the third research question, we investigated the runtime
overhead introduced by our approach. We computed the time
required to execute the verification framework inserted into
the system. We used the tests that trigger the errors in our
dataset instead of running the final artifact to compute its
execution time. We decided to rely on the testing phase of the
build system because it requires no extra configuration, making
the execution of our studies repeatable by other researchers.
Furthermore, we computed the timing only from the beginning
of the verification of the assertion until the recovery strategy
is applied. Therefore, the overhead introduced by the build
system does not affect our results. Moreover, background tasks
and the scheduler of the operating system could impact the
validity of our performance results. We mitigated this threat
by repeating the studies five times and averaging the results.

A further threat to the validity of our studies is the missing
comparison with other similar techniques that provide a state
recovery mechanism, such as ErrDoc [38]. Since C does not
have an out-of-the-box mechanism to handle errors like Java,
i.e., with Exception, developers are forced to create their own
handling error conventions. ErrDoc targets C programs and
it fixes errors in error handling code. Furthermore, ErrDoc
relies on a specification of the error to generate the fix. The
error specification is automatically inferred using APEx [39],
while our approach currently requires developers to manually
annotate their code. Therefore, a direct comparison between
the two approaches is not yet possible.

External Validity. A threat to external validity concerns
the generalization of our results in two dimensions: (i) the
application of our approach to other software projects and
(ii) the extendibility of our approach to other languages
and/or build tools. We tested our approach using a controlled
environment in which we verified the code using assertions
described in FOL formulae with only a single hardware
configuration. More engineering efforts will be devoted to
extend the expressiveness of the Assertion Library allowing
developers to declare properties in other logics. This requires
the Assertion Plugin to also generate a more complex model of
the source code. Therefore, the generalization of the runtime
overhead might not hold for different hardware or projects that
require the verification of more complex properties. Moreover,
we studied the approach with a limited dataset that comprises
100 bugs collected from 20 open source Java projects. To
further extend the dataset or even apply our prototype tool
to a full project, we need to provide assertions which specify

the correct behavior of the system under analysis. This task is,
unfortunately, time consuming and requires expertise in that
system. Moreover, we only support the verification of integer
and time related properties. Future work will be devoted to
extend the datatypes and domains supported by our prototype
tool. Furthermore, we plan to test our prototype tool with a real
system collaborating with the developers to insert the required
assertions.

Other researchers can freely use our tool and apply it to
other case studies extending our results. For the extendibility
to other languages and/or build tools, our approach relies on
two elements: a runtime library and a compiler plugin. Mod-
ern programming languages and their toolkits provide both
elements, making it reasonably easy to adapt our approach to
them.

VI. RELATED WORK

A wide spectrum of related work in literature addresses the
verification and repair of software, both at compile- and at
run-time. This leads us to divide the related work into three
categories: program repair, formal verification at compile time,
monitoring and run time enforcement (RV&E).

Program Repair. In the domain of program repair, one of
the most used technique to address this problem is a generate-
and-validate approach. These techniques monitor the results of
the test suites of a project and when a test fails, the repairing
technique generates the set of all possible changes, called
search space, that can be applied to the code to repair the
identified defect. Then, a patch is selected and applied and
the failed test is executed again. Based on the outcome of the
test, the patch is accepted or refused. Long et al. [40] studied
the relationship between search space and different existing
techniques. They studied how changing the search space, the
existing techniques change their repairing success rates. They
discovered that for a better correction ration, information
outside of the test suites should be included in the search
space. Instead, Le et al. [41] propose a genetic algorithm
to repair defects that can be run in a cloud environment
for an average cost of 8$ per patch. Nguyen et al. [42]
propose an approach that translates the source code into
constraint problems based on the tests execution. Then, for
each failed test, it generates a constraint and select as repairing
patch the piece of code that satisfies such constraint problem.
The common shortcoming of these approaches is that they
overfit the problem. They generate patches that bypass the
program logic to successfully execute the failed tests more than
repairing the code. To overcome this, some researchers started
to use semantic information to repair the programs. Ke et al.
[43] proposed to create a corpus of STM problems generated
from snippets of code. When a test fails, they derive the input-
output relationship of the test and use this to query the corpus.
The results are synthesized into patches that are used to repair
the program. The work of Mechtaev et al. [44] and Tonder and
Le Goues [45] are the closest to our approach. Mechtaev et
al. [44] synthesize patches from a formal specification of the
requirements of the project. Tonder and Le Goues [45] model a
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program via an intermediate language that performs operation
on a heap. Then, developers can write the specifications of
their program as heap properties and whenever a property does
not hold, their approach synthesizes a patch using the snippets
of code where the property holds. All the presented techniques
work at compile time and they repair the program when a test
fails. In contrast, our approach repair the program at runtime
and it does not rely on test to discover errors, therefore it is
suitable to also repair failures that were not expected by the
developers. Other works follows a similar approach to ours
repairing the memory state at runtime. Demsky and Rinard
[46] proposed a specification language that is used to express
the correctness properties on the data-structures used in the
program. These properties are then used at runtime to identify
broken data-structures and repair them. Similarly, Lewis and
Whitehead [47] proposed a fault-monitor that learns execution
invariants. When an invariant is violated, the runtime monitor
tries to restore it. In contrast, our approach relies on invariants
written directly in the code by the developers in regular Java.

Formal Verification at Compile Time. Various formal
verification techniques have been employed to discover soft-
ware bugs at compile time, among which software model
checking deserves a special mention. The effectiveness of
these techniques highly depends on the application domain.
SPIN [48] is designed to verify protocols, Bandera [49] works
on Java programs, SLAM [50] model checks device drivers,
and UPPAAL [51] addresses real-time systems. Spalazzi et
al. [7] propose a verification technique for the correctness
of real-time Java software based on a network of timed
automata. However, these approaches and tools are monolithic
and do not allow user-defined state representation hindering
their utilization for different kinds of application domain.
Java Pathfinder [52] addresses this problem by providing an
open framework that can be customized under the needs of
the developers. It employs a modified JVM that is able to
interleave symbolic and concrete executions of Java bytecode.
Since the verification of program properties is performed on
a model, the model must also describe the environment in
which the program operates. The implication of this limitation
is important in practice because model checking techniques
are doomed to perform poorly whenever imprecise models of
the environment are provided. Furthermore, such techniques
have several scalability issues, e.g., the well-known state-
explosion problem and the difficulty in tracking the correctness
specifications when software evolves. A different approach is
represented by the proof carrying code (PCC) [53]. In this
approach, a developer tries to formally prove that the code
component, in the assumed initial conditions, fulfills a given
safety policy. If such proof can be produced, the code is
deployed onto a runtime environment that is able to check (i)
whether the proof is a valid proof for the associated code, and
(ii) whether the proof implies the desired safety policy, given
the initial conditions. In case of a positive answer, the code
can be executed on the recipient. The main difference between
our approach and PCC is that, even if they both share the idea
of shipping the executable with some additional artifacts that

enforce the desired property, PCC assumes that the additional
artifact is checked only once and statically. This implies that
PCC shares the severe scalability issues of other static analysis
techniques that limit its applicability to real-world software
projects.

Monitoring and RV&E. The limits of formal verifica-
tion at compile time are overcome by the approach based
on monitoring and enforcement at runtime, at the cost of
an execution overhead. These are techniques to make safer
software systems at run time,e.g., [54]. However, it should be
pointed out that, even if on the one hand these techniques
overcome the problems of scalability and modeling of the
execution environment typical of static analysis techniques;
on the other hand, since these techniques are applied at run
time, they are necessarily incomplete. Runtime enforcement
uses a monitor to detect if the system violates a correctness
specification. Subsequently, in case of a violation, it applies
counter-actions that bring back the system to a correct state.
From this point of view, therefore, runtime verification can
be considered a special case of runtime enforcement in which
the only counter-action consists in interrupting the execution
of the system. There are several works, even recent ones,
that show possible applications of this approach [55]. For
example, Khan et al. [21] present a design methodology for the
development of reliable and safe industrial controllers. From
the formal specification of an industrial controller executable,
it generates the respective program and a monitor that protects
the program runtime generated by external attacks. Similarly,
Barnett and Schulte [6] have proposed a method to implement
the behavioral interface specifications on the .NET platform.
In their framework, the models of a program are expressed
in AsmL, a specific executable that describes the program’s
semantics and verifies the monitoring of execution. Colombo
and Pace [56], working on a system of financial transactions,
integrated static analysis techniques to runtime monitoring
techniques. AspectJ [57] and JavaMOP [58] are some of the
most used tools for monitoring and applying properties at run
time for Java applications. Both allow to intercept events along
Java code execution (also called pointcuts) and to monitor or
react to them. Events that can be captured are object instances,
method calls, or variable reads and writes. However, they do
not allow attaching an event to a specific line of code. This
motivated us to develop the assertion library to be invoked
by the programmer exactly in the line of code where control
is needed. Furthermore, we argue that, unlike AspectJ and
JavaMOP, our approach can be effectively integrated with pre-
existing assertion-based test suites. The assertions specified
with our assertion library can be used for test generation as
well as for static analysis and monitoring. Larva [24] is a tool
for generating Java monitors. The main difference to JavaMOP
is the more expressive specification language regarding the
properties that parameters and system states need to satisfy.
Java Modeling Language (JML), proposed by Leavens et
al. [1], it is perhaps the related work closest to ours. JML
supports quantifiers, specification-only variables, and other
enhancements with respect to some of its predecessors such
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as Eiffel [59]. It compiles a Java program including invariants,
pre-, and post-conditions specified by developers. Each source
code instruction is wrapped with a set of instructions that
guarantees the properties defined by the users. However, this
assumes some predefined semantics for the variables used in
the program that might be wrong. Furthermore, JML does not
provide any kind of automatic recovery of a correct execution
behavior.

From a formal point of view, it has been proven that, when
RV&E is limited to finite (but arbitrarily long) system runs,
any LTL specification can be monitored, but only response
properties can be enforced (i.e. properties that can be written
as �♦p or �(p→ ♦q), where p and q are atomic propositions)
[60]. Currently, we implemented a prototype where only a
subset of the safety specifications are enforced (e.g. those
expressible as �p, where p is a local assertion on program
variables). Nevertheless, the theory ensures that our prototype
can be extended to the full class of LTL specifications for
monitoring and response properties for enforcing.

VII. CONCLUSION

In this paper, we presented an approach to identify and
automatically recover errors in programs. We presented a
general method that requires an Assertion Library and an
Assertion Plugin. The library is used by developers to assert
properties of their code that are verified either at runtime
or at compile time by our proposed verification framework.
The Assertion Plugin extends the build system generating an
abstract behavioral model of the source code and inserts it into
the final artifact produced. Furthermore, the Assertion Plugin
injects into the final artifact a verification framework. The
purpose of the verification framework is twofold: (i) monitor
the application runtime and identify inconsistencies and (ii)
recover the memory state in order to overcome the identified
errors.

We evaluated our approach on a dataset that comprises 100
real world bugs from 20 open source Java projects. Our results
show that our approach is able to identify 100% of the errors
and automatically recover from 84% of them. Future work
will be devoted to enrich the logic theories supported by our
prototype and perform case studies with developers to fully
integrate and study our approach in complex systems.

ACKNOWLEDGMENT

This research is funded by the Austrian Research Promotion
Agency FFG within the FFG Bridge 1 program, grant no.
850757.

REFERENCES

[1] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML:
A behavioral interface specification language for Java,” ACM SIGSOFT
Software Engineering Notes, vol. 31, no. 3, pp. 1–38, 2006.

[2] R. Calinescu, K. Johnson, and C. Paterson, “Efficient parametric model
checking using domain-specific modelling patterns,” in Proceedings of
the 40th International Conference on Software Engineering (ICSE): New
Ideas and Emerging Results. ACM, 2018, pp. 61–64.

[3] N. Tillmann and J. De Halleux, “PEX–white box test generation
for .NET,” in International Conference on Tests and Proofs (TAP).
Springer, 2008, pp. 134–153.

[4] K. Havelund and T. Pressburger, “Model checking Java programs
using Java PathFinder,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 366–381, 2000.

[5] W. Grieskamp, N. Tillmann, and W. Schulte, “XRT exploring runtime
for .NET architecture and applications,” Electronic Notes in Theoretical
Computer Science, vol. 144, no. 3, pp. 3–26, 2006.

[6] M. Barnett and W. Schulte, “Runtime verification of .NET contracts,”
Journal of Systems and Software, vol. 65, no. 3, pp. 199–208, 2003.

[7] L. Spalazzi, F. Spegni, G. Liva, and M. Pinzger, “Towards model
checking security of real time Java software,” in Proceedings of the
International Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2018, pp. 642–649.

[8] G. Liva, M. T. Khan, F. Spegni, L. Spalazzi, A. Bollin, and M. Pinzger,
“Modeling time in Java programs for automatic error detection,” in
Proceedings of the 6th Conference on Formal Methods in Software
Engineering (FormaliSE), 2018, pp. 50–59.

[9] G. Liva, M. T. Khan, and M. Pinzger, “Extracting timed automata from
Java methods,” in Proceedings of the IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2017,
pp. 91–100.

[10] P. Ferrara, A. Cortesi, and F. Spoto, “CIL to Java-bytecode translation
for static analysis leveraging,” in Proceedings of the 6th Conference on
Formal Methods in Software Engineering (FormaliSE). ACM, 2018,
pp. 40–49.

[11] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). ACM, 1977, pp.
238–252.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley Professional,
1999.

[13] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[14] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE software, vol. 25, no. 5, 2008.

[15] Facebook, “Infer static analyzer,” 2017, accessed 10 May 2019.
[Online]. Available: http://fbinfer.com/

[16] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi, “Fast
and precise type checking for JavaScript,” Proceedings of the ACM on
Programming Languages, vol. 1, no. 48, pp. 1–30, 2017.

[17] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Proceedings of the 27th International
Conference on Software Engineering (ICSE). ACM, 2005, pp. 580–586.

[18] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[19] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5.
ACM, 2005, pp. 263–272.

[20] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running:
Dive Into the Future of Infrastructure. O’Reilly Media, Inc., 2017.

[21] M. T. Khan, D. Serpanos, and H. Shrobe, “ARMET: Behavior-based
secure and resilient industrial control systems,” Proceedings of the IEEE,
vol. 106, no. 1, pp. 129–143, 2018.

[22] F. Chen, M. d’Amorim, and G. Roşu, A formal monitoring-based
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