
Alpen-Adria-Universität Klagenfurt
Software Engineering Research Group

Technical Report Series

Proof of Soundness of TTS and Repair
Strategy

Giovanni Liva, Muhammad Taimoor Khan

Report AAU-SERG-2019-001

AAU-SERG-2019-001

Published, produced and distributed by:

Software Engineering Research Group
Institute of Informatics Systems
Faculty of Technical Sciences
Alpen-Adria-Universität Klagenfurt
Universitätsstraße 65-67
9020 Klagenfurt
Austria

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://serg.aau.at/bin/view/Main/Publications

For more information about the Software Engineering Research Group:
http://serg.aau.at

Note: Appendix of TSE-2018-11-0423 submission

c© copyright 2019, by the authors of this report. Software Engineering Research Group, Institute of In-
formatics Systems, Faculty of Technical Sciences, Alpen-Adria-Universität Klagenfurt, Austria. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the authors.

Proof of Soundness of TTS and Repair Strategy

Giovanni Liva1 and Muhammad Taimoor Khan2

1Department of Software Engineering, Alpen-Adria Universität,
Klagenfurt, Austria, giovanni.liva@aau.at

2School of Computing and Mathematical Sciences, University of
Greenwich, London, UK, m.khan@gre.ac.uk

July 1, 2019

1 Introduction

In this article, we prove the soundness of the Time Type System (TTS) pre-
sented (and currently under review) in the TSE journal. We first recap syntax,
semantics, and typing rules of TTS and then we prove its soundness. A type
system is sound if well-typed programs do not incur run-time type errors, i.e.,
they do not get stuck when evaluated according to the operational semantics:

Typing rules are sound =⇒ no well-formed programs gets stuck.

To be more precise, this means that when programs are well-typed they end
up in a value or the computation is simply not finished and continues:

` e : τ ∧ e −→∗ e′ =⇒ e′ ∈ Value ∨ ∃e′′. e′ −→ e′′

Furthermore, we also prove the soundness of our repair strategy. A repair
strategy is sound if the program before and after the repair is semantically
equivalent. For this, we first presents the definition of semantically equivalent
programs and then we prove the soundness of the repair strategy.

2 Syntax and Semantics

2.1 Syntax Rules

Figure 1 presents a subset of the generic programming language supported by
TTS described using rules in Backus-Naur form. It presents the most interesting
cases of the language with methods, statements, expressions, and boolean com-
parisons. Here, i represents an identifier for method names and obj for object
names, n represents a numerical literal, and x ranges over program variables.

1

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 1

Methods m ::= i(x1, , xn){ s }

Statements s ::= e x = e if (b) then s1 else s2

while (b) s s1; s2 return e

Expressions e ::= n x e1 + e2 e1 − e2 e1 × e2

e1 ÷ e2 obj.m(e1, . . . , en)

min
max

(e1, e2)

Booleans b ::= e1 < e2 e1 <= e2 e1 >= e2

e1 > e2 b1 && b2 b1 || b2

Types τ ::= T D DoT

Figure 1: Programming language grammar supported by the Time Type System
(TTS).

Methods m. We elide many details of the definition of a program and
we represent it just as a list of methods. Each method m is composed of an
identifier i, a list of variables (x1, . . . , xn) that represent its input parameters
and a sequence of statements s.

Statements s. We include here the syntax for the assignment, if-else, while,
sequence of statements and return statements. The other variants of conditional
and loop statements typically provided in programming languages are handled
in a similar way. The rule for the assignment statement assign the expression e
to a variable x. The rules for the if-else and while statements contain a boolean
expression b. Concerning the if-else statement, if b is true, the sequence of
statements s1 is executed otherwise s2. Concerning the while statement, if b is
true, the sequence of statements s is executed iteratively until b gets false. The
rule for the return statement returns the expression e.

Expressions e. Regarding literals n, the rule considers only integer values.
Furthermore, our syntax supports method calls in the form obj.m(e1, . . . , en),
the basic arithmetic operations, and min/max operations.

Booleans b. We support all the boolean operators for the comparison of
timestamps. Note, that equality checks do not suffer from overflow comparison
problems and therefore, we skip it. We also include the logical conjunction and
disjunction of boolean expressions.

Types τ . For the sake of simplicity, we report only the time types. If we
interpret the (real) time as a line, then Timestamp values T are used to rep-
resent arbitrary points along this line, while Duration values D can be used
to represent an interval between two points. This differentiation is mandatory
for our purposes since our repair strategy seeks for expressions that compare
Timestamp values that can suffer from integer overflow problems. However, it
is not possible to know a priori the exact time type of the time parameters/at-
tributes because they do not always have an initialization expression that can
be used to infer their time type. Therefore, we introduce the DoT time type

2

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

2 AAU-SERG-2019-001

which expresses that a time expression is of type Duration or Timestamp.

2.2 Type Inference Rules

Our approach takes in input a well-typed Java program and outputs the program
annotated with the time type information. The type inference rules describe how
TTS assigns a time type to literals, variables, and expressions. The rules are
expressed via operational semantics [1] and they consist of a set of premises and
a conclusion. Both premises and the conclusion are judgments. A judgment
has the form e : τ which means e has type τ . In the context of the paper, τ
refers to a time type. Judgments include a type environment Γ that contains
the set of type bindings from variables and expressions to their respective time
types. Since assignments can change the binding of a variable to a new time
type, we designed our type system to be flow-sensitive which is achieved by
inserting an output environment Γ′ in addition to the input environment. For
the sake of readability, we have shortened the names of time types Timestamp
and Duration with T and D, respectively.

Example. In the following we show an example of a typing rule consisting
of two premises e1 and e2. The rule is read as: given that e1 has type Duration
and e2 has type Timestamp in the type environment Γ, then the sum of the
expressions e1 and e2 has type Timestamp. Therefore, variable x has type
Timestamp in the output environment Γ′.

Γ ` e1 :D a Γ Γ ` e2 :T a Γ

Γ ` x = e1 + e2 :T a Γ[x 7→ T]

The reasoning of the rule is based on the notion that if we add ”some”
time to a date, the result is still a date but in the future. Moreover, since the
expression is assigned to variable x, the resulting environment extends Γ with
a new mapping between x and its time type T . Figure 2-6 present the typing
rules of TTS. Here, the function isT imeV ar returns true if the expression in
input is a reference to a time variable, while the function posType that returns
for the method m the set of positions for its arguments that are expected to be
time related and their expected time types.

Γ0 := ∀ni=1isT imeV ar(xi)→ Γ[xi 7→ DoT] Γ0 ` s a Γ′

Γ ` i(x1, , xn){ s } a Γ′
[Method]

Figure 2: Methods.

3

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 3

Γ `s1 :τ ′a Γ′ Γ′ `s2 :τ ′′a Γ′′

Γ ` s1; s2 a Γ′′
[Stm]

Γ `e :τ a Γ′

Γ ` return e : τ a Γ′
[Ret]

Γ ` b a Γ′ Γ′ ` s a Γ′′

Γ ` while (b) s a Γ′′
[While]

Γ ` e :τ a Γ′[e 7→ τ]

Γ ` x = e :τ a Γ′[x 7→ τ]
[Assign]

Γ ` b a Γ′ Γ′ ` s1 a Γ′′ Γ′ ` s2 a Γ′′′

Γ ` if (b) then s1 else s2 a Γ′′ ∪ Γ′′′
[If]

Figure 3: Statements.

Γ0 := Γ ∀ni=1
Γi−1`ei:τaΓi

Γi−1`ei:τaΓi[ei 7→τ]

Γ′0 := Γn ∀(i,τ)∈PosType(m) Γ′i−1`ei:τaΓ′i[ei 7→τ]

Γ`obj.m(e1, . . . , en)aΓ′n
[Et]

m ∈ RTτ Γ ` obj.m(e1, . . . , en) a Γ′

Γ ` obj.m(e1, . . . , en) : τ a Γ′
[Rt]

n ∈ int ∨ n ∈ long

Γ ` n :D a Γ
[Literal]

Γ ` e1 : τ a Γ′ Γ′ ` e2 : τ a Γ′′

Γ ` min
max

(e1, e2) : τ a Γ′′
[Min-Max] x ∈ Γ τ := Γ(x)

Γ ` x : τ a Γ
[Var]

Γ ` e1 : τ ′ a Γ′

Γ′ ` e2 : τ ′′ a Γ′′

1©∨ 2© : � = −
2©∨ 3©∨ 4© : � = +
4© : � = ×
4© : � = ÷

Γ ` e1 � e2 : τ0 a Γ′′
[Int]

1© : τ ′ = τ ′′ → τ0 := D 2© : τ ′ = T ∧ τ ′′ = D → τ0 := T
3© : τ ′ = D ∧ τ ′′ = T → τ0 := T 4© : τ ′ = D ∧ τ ′′ = D → τ0 := D

Figure 4: Expressions.

Γ0 = Γ ∀ni=1Γi−1 ` bi a Γi � ∈ {||, &&}
Γ ` b1 � · · · � bn a Γn

[Bool]

Γ ` e1 : τ a Γ′

Γ′ ` e2 : τ a Γ′′
� ∈ {<,<=, >=, >}

Γ ` e1 � e2 a Γ′′
[Comp]

Figure 5: Booleans.

4

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

4 AAU-SERG-2019-001

Γ ` e1 : τ ′ a Γ′ Γ′ ` e2 : τ ′′ a Γ′′

τ0 :=

τ ′ τ ′ 6= DoT ∧ τ ′′ = DoT
τ ′′ τ ′′ 6= DoT ∧ τ ′ = DoT
DoT otherwise

Γ ` min
max

(e1, e2) : τ0 a Γ′′
[DoT-Min-Max]

Γ ` e1 : τ ′ a Γ′

Γ′ ` e2 : τ ′′ a Γ′′

1©∨ 2©∨ 3©∨ 4© : � = −
4©∨ 5©∨ 6©∨ 7© : � = +
2©∨ 8© : � = ×
2©∨ 8© : � = ÷

Γ ` e1 � e2 : τ0 a Γ′′
[DoT-Int]

1© : τ ′ = T ∧ τ ′′ = DoT → τ0 := DoT 2© : τ ′ = D ∧ τ ′′ = DoT → τ0 := D
3© : τ ′ = DoT ∧ τ ′′ = T → τ0 := D 4© : τ ′ = DoT ∧ τ ′′ = D → τ0 := DoT
5© : τ ′ = T ∧ τ ′′ = DoT → τ0 := T 6© : τ ′ = D ∧ τ ′′ = DoT → τ0 := DoT
7© : τ ′ = DoT ∧ τ ′′ = T → τ0 := T 8© : τ ′ = DoT ∧ τ ′′ = D → τ0 := D

Figure 6: DoT Expression Type Inference.

5

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 5

2.3 Dynamic Semantics

In this Section, we define the dynamic semantics of TTS by a series of reduction
rule. The dynamic semantics (also known as runtime semantics) specifies how
programs are to be executed. The reduction rules describe operationally a (small
step [1]) evaluation relation and they define a transition system. For a reduction
e −→ e′, e is the source and e′ the target of the reduction.

i(x1, . . . , xn){s} −→ s [D-Method]
s1→∅
s1;s2

−→ s2 [D-Stm]

return e −→ e [D-Ret]
b−→b′

while b s −→ s [D-While>]
b−→false
while b s −→ ∅ [D-While⊥]
x = e −→ e [D-Assign]

b−→true
if b then e1 else e2

−→ e1 [D-If>]
b−→false

if b then e1 else e2
−→ e2 [D-If⊥]

b−→b′
if b then e1 else e2

−→ if b′ then e1 else e2 [D-If]

obj.m(e1, . . . , en) −→ C[obj.m(e1, . . . , en)] [D-Rt]
e1−→e′1 ... en−→e′n
C[obj.m(e1,...,en)] −→ ∅ [D-Et]

n −→ ∅ [D-Literal]
min(e1, e2) −→ if e1 < e2 then e1 else e2 [D-Min]
max(e1, e2) −→ if e1 > e2 then e1 else e2 [D-Max]

x −→ ∅ [D-Var]
e1−→e′1 e2−→e′2

e1�e2 −→ �(e′1, e
′
2) [D-Int]

b1 �1 · · · �n−1 bn −→ b1; . . . ; bn [D-Bool]
b1−→b′1 b2−→b′2

b1�b2 −→ �(b′1, b
′
2) [D-Comp]

Context C ::= [] C obj.m(e1, . . . , en)

A context C is an expression with one sub expression replaced by a hole, denoted
with []. We use this to force an order on the reduction rules. In this manner,
rule D-Rt applies always before rule D-Et.

3 Proof of Soundness of TTS

In this Section we will show soundness of TTS following the approach presented
by Wright and Felleisen [2] which relies on two lemmas:

Lemma 1 (Preservation). As we evaluate a program, its type is preserved at
each step. This property is also called subject reduction.

Γ ` e : τ ∧ e −→ e′ =⇒ Γ ` e′ : τ

Lemma 2 (Progress). Every program either evaluates to a value or can be
stepped into another program.

Γ ` e : τ =⇒ e ∈ Value ∨ ∃e′. e −→ e′

The proof of soundness of our type system entails from these lemmas. The
Preservation Lemma says that if a well-typed program takes a step of evaluation,

6

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

6 AAU-SERG-2019-001

then the resulting program is also well-typed. This grants the use of induction
on the number of steps taken in e −→∗ e′ to show that e′ has the same type
as of e. Then, the Progress Lemma can be applied on e′ to show that it can
continue and, therefore, that the evaluation does not get stuck.

First, we show these lemmas for TTS without the DoT type, and later we
demonstrate how the lemmas can be extended to it. Notice that, we assume
that a program is syntactically correct and all variables and method calls in the
language are time related. This assumption is realistic because our type system
operates on top of well-typed Java programs and the Time Semantics maps the
source programming language into the language supported by TTS, retaining
only the time related instructions. Furthermore, to simplify the exposition,
we present the typing only for the Time Types, i.e., D and T . Methods and
Statements terms that we skip are typed with a void type, while Booleans are
typed with bool type. Since only Expressions rules can type a term with a
Time Type, we demonstrate the soundness only for these rules. The proof for
the other terms, follows in similar manner.

Proof of Preservation Lemma. We assume e : τ ∧ e −→ e′ and we want to show
that Γ ` e′ : τ . We do this by well-founded induction on typing derivations.
Since the number of typing derivation is finite, the relation of sub-derivation
is well-founded. Thus, given e −→ e′ there are only the following possible
applicable evaluation rules: D-Rt, D-Et, D-Literal, D-Min, D-Max, D-Var, and D-Int.

• Case D-Rt (e = obj.m(e1, . . . , en)). Since we have a typing derivation
for e, we know that rule Et is applied on e iff the method call is in the
list of RTτ methods. If the method call is a RTτ method call, we have
the step obj.m(e1, . . . , en)) −→ C[obj.m(e1, . . . , en))]. By the induction
hypothesis, the rule types e with τ . Furthermore, we know that rule Et

does not type method calls and thus, we can conclude that Γ ` e′ : τ .
Similarly, in the case the method call is not a RTτ method call, the rule
types e with type void and the same conclusion holds.

• Case D-Et (e = C[obj.m(e1, . . . , en)]). The typing derivation of Γ ` e : τ
must form like this:

m∈ET
Γ`obj.m(e1,...,en):τaΓ′

Γ′ ` C[obj.m(e1, . . . , en)] : τ a Γ′

We know that e −→ ∅ which eliminates the method call. Hence, we can
trivially conclude Γ ` ∅ : τ .

• Case D-Literal (e = n). This case can be trivially verified since the rule
Literal is a constructor for the type D and its only step is termination.

• Case D-Min and D-Max (e = min
max

(e1, e2)). In this case, we cover two different
rules that differ only on the boolean expression b used in their step
e −→ if b then e1 else e2, which do not alter the type of the expression.
The typing derivation of Γ ` e : τ must form like this:

Γ ` e1 : τ a Γ′ Γ′ ` e2 : τ a Γ′′

Γ ` min
max

(e1, e2) : τ a Γ′′

7

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 7

From the induction hypothesis, we know that e1 : τ and e2 : τ and follow-
ing the step rule, we know that if b then e1 : τ else e′′2 : τ . Hence, we
can conclude that Γ ` (if b then e1 else e2) : τ .

• Case D-Var (e = x). The step rule is x −→ ∅ and by induction hypothesis
we know Γ ` x : τ . Hence, we conclude Γ ` ∅ : τ .

• Case D-Int (e =
e1−→e′1 e2−→e′2

e1�e2). The typing derivation of Γ ` e : τ must
form like this:

Γ`e′1:τ ′

Γ`e1:τ ′
Γ`e′2:τ ′′

Γ`e2:τ ′′

Γ ` e1 � e2 : τ0

We know that e −→ �(e′1, e
′
2), so we need to show that Γ ` �(e1, e2) : τ0.

This follows by the induction hypothesis where we know e1 : τ ′ and e2 : τ ′′,
and the definition of �(·, ·).

Proof of Progress Lemma. We assume Γ ` e : τ and we want to show that
e ∈ V ∨ ∃e′. e −→ e′, where V is the set of Value. We prove this by induction
on the typing derivation of e. Since for a well-formed program the number of
typing derivation is finite, the induction is well-founded. We recall the definition
of an expression in TTS:

e ::= n x e1 + e2 e1 − e2 e1 × e2

e1 ÷ e2 obj.m(e1, , en) b

min
max

(e1, e2)

There are six cases:

• Case e = n. Since n ∈ V, it holds.

• Case e = x. This case is not possible because we would have ∅ ` x : τ and
from an empty environment no type can be assigned to x, invalidating the
hypothesis of well-formed program.

• Case e = e1 � e2, where � ∈ {+,−,×,÷}. For Γ ` e1 � e2 : τ there is a
typing derivation and it must have the form:

Γ ` e1 : τ ′ a Γ′

Γ′ ` e2 : τ ′′ a Γ′′

1©∨ 2© : � = −
2©∨ 3©∨ 4© : � = +
4© : � = ×
4© : � = ÷

Γ ` e1 � e2 : τ0 a Γ′′
[Int]

Using the induction hypothesis, we know that e1 ∈ V ∨ ∃e′1 . e1 −→ e′1
and e2 ∈ V ∨ ∃e′2 . e2 −→ e′2. We have four different possibilities now:

– Both e1 and e2 are Values. This means that e1 and e2 are either
a variable or a literal value. Then, e1 � e2 proceeds to �(e1, e2) as
desired.

8

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

8 AAU-SERG-2019-001

– e1 and e2 are not a Value, then ∃e′1 . e1 −→ e′1 and ∃e′2 . e2 −→ e′2
such that we have:

e1 −→ e′1 e2 −→ e′2
e1 � e2 −→ �(e′1, e

′
2)

– e1 is a Value but e2 is not. Then, the typing derivation must be of
the form:

e2 −→ e′2
e1 � e2 −→ �(e1, e′2)

– e2 is a Value but e1 is not. Then, the typing derivation must be of
the form:

e1 −→ e′1
e1 � e2 −→ �(e′1, e2)

• Case e = obj.m(e1, , en). We enforce an ordering between the typing
rules Rt and Et using a context C. Thus, first the typing of Rt starts doing
the step obj.m(e1, . . . , en) −→ C[obj.m(e1, . . . , en)]. Then, rule Et can be
matched resulting in a derivation of the form:

C[obj.m(e1, . . . , en)] −→ ∅

• Case e = min(e1, e2). In this case, we can use the induction hypothesis to
derive that e1 ∈ V ∨ ∃e′1 . e1 −→ e′1 and e2 ∈ V ∨ ∃e′2 . e2 −→ e′2. We
have four different possibilities now:

– Both e1 and e2 are Values. This means that e1 and e2 are ei-
ther a variable or a literal value. Then, min(e1, e2) proceeds to
if e1 < e2 then e1 else e2, as desired.

– e1 and e2 are not a Value, such that ∃e′1 . e1 −→ e′1 and ∃e′2 . e2 −→
e′2. Then, the derivation rule must be of the form:

Γ`e1:τ Γ`e2:τ
Γ`e1<e2

Γ`if e1<e2 then e1 else e2:τ

Γ ` min(e1, e2) : τ

Hence, min(e1, e2) proceeds to if e1 < e2 then e1 else e2, as de-
sired.

– e1 is a Value and e2 is not. Then, it follows from the previous case
without a reduction of e1.

– e2 is a Value and e1 is not. Then, it follows from the previous case
without a reduction of e2.

• Case e = max(e1, e2). This case follows the same proof for the case e =
min(e1, e2), where only the if expression is changed to e1 > e2.

9

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 9

3.1 Subtyping

We show the previous lemmas without considering the DoT time type. Here we
first introduce the subtyping rules and we adjust the lemmas for them.

The statement τ1 <: τ2 reads as τ1 is a sub-type of τ2, which means that a
τ2 can be used wherever a τ1 is expected. One way to think of this is in terms of
sets of values corresponding to these types. Any value of type τ1 must also be
a value of type τ2. Assuming a type interpretation T[[τ]] that gives the set of
elements, we understand τ1 <: τ2 to mean T[[τ1]] ⊆ T[[τ2]]. The <: subtyping
relation is transitive, i.e., if τ1 <: τ2 ∧ τ2 <: τ3 → τ1 <: τ3, and reflexive, i.e.,
every type is a subtype of itself. Therefore, we define the following subtyping
relationship:

T

DoT

D

From this, the Preservation lemma follows trivially because in every instance
we can replace DoT with either T or D without encountering typing errors. In-
stead, for the Progression lemma, we need to show that the typing rules for
DoT , presented in Figure 6, can always proceed. The proof is similar to the
third case, i.e., e = e1 � e2, in which we have an extra step before proceeding
to compute �(e′1, e

′
2). The rule for DoT types requires to compute the maximal

type, i.e., the higher possible available type in the sub-typing lattice that satis-
fies the typing rule. This step is accomplished using the unification via pattern
matching algorithm [3] with the cases depicted in rule Int. The algorithm always
terminates with either the maximal type or a failure if nothing matched. In the
case of failure, DoT is considered the maximal type and the computation can
proceed further, granting the validity of the Progress lemma.

From here onwards the proof of repairing soundness starts.

4 Soundness of Repairing

In this Section we will show soundness of our repairing strategy. The soundness
statement is hypothesized in the following lemma.

Lemma 3 (Repair). If a repair (R) of an expression (e) results in another
expression (e’) and separate evaluation of repaired expression (e) and repairing
expression (e’) yields different program states (π and π′), then the yielded states
are semantically equivalent.

∀e, e′ ∈ E, π, π′ ∈ Π : e′ = RJeK ∧ EJeK(π, π′) ∧ EJe′K(π, π′′) =⇒ equal(π′, π′′)

Axiom 1 (Semantic Equivalence). Two states are semantically equivalent, if
both states have same identifiers and their corresponding values.

equal(π′, π′′)⇐⇒ ∀i ∈ I, v, v′ ∈ V : i ∈ D(π) ∧ i ∈ D(π′) ∧ 〈i, v〉 ∈ S(π)

∧ 〈i, v′〉 ∈ S(π′) =⇒ v = v′

where I is a memory address (i.e., a variable), V is Value, D is Domain (i.e.,
mathematical domain) and S is Store (i.e., a look up function).

10

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

10 AAU-SERG-2019-001

Axiom 2 (State Composition). State composition is an operation that takes
two states π′ and π′′ and produces a state π such that

∀i ∈ I, v ∈ V : i ∈ D(π′′).〈i, v〉 ∈ S(π′)

The resulting composite state is denoted as π′ ◦ π′′.

5 Proof of Soundness of Repair

Our repair strategy refines timestamp comparison removing possible overflows.
The soundness of the repair formally proves that the refined expression is se-
mantically equivalent to the original expression, without suffering of overflows.
How to mitigate overflows is presented in the TSE paper[4], therefore, in this
proof we prove the semantic equivalence between the expressions before and
after the repair strategy is applied.

The proof of soundness of repair is essentially a structural induction on the
syntactic domain of expressions (e) as shown in Section 2.1. Since time values
involve only arithmetic expressions and their comparison, therefore, only time
sensitive expression are proof relevant which are Boolean. Based on the syntactic
domain of boolean (b), we only prove the following interesting case, all other
cases are analogous to this and they can be rehearsed easily:

• Case e1 < e2: Both e1 and e2 are expressions. We divided the expressions
in two categories: (i) pure and (ii) with side-effects. Based on the syn-
tactical expression domain (e), only method calls can modify the program
state via side-effects, whereas all the other are pure expressions.

i. Pure expression are without side-effects and therefore, they cannot
alter the program state. Hence, we can conclude that the following
repair produce a semantically equivalent expression.

e1 < e2
repair−−−−→ e1 − e2 < 0

ii. Expressions with side-effects, i.e., method calls, might change the
program state. Therefore, the following repair is produced where
e1 = obj1.m1(e′1, . . . , e

′
n) and e2 = obj2.m2(e′′1 , . . . , e

′′
n).

obj1.m1(e′1, . . . , e
′
n) < obj2.m2(e′′1 , . . . , e

′′
n)

obj1.m1(e′1, . . . , e
′
n)− obj2.m2(e′′1 , . . . , e

′′
n) < 0

repair

There are three different cases that could occur:

– Both e1 and e2 do not have side effects. Therefore, EJe1 < e2K
produces a program state π′ and RJe1 < e2K produces a program
state π′′ such that equal(π′, π′′) holds.

– Either e1 or e2 has side effects. Let us say e1 is the expres-
sion with side effects. Therefore, given the program state π,
EJe1K(π, π′)∧EJe2K(π, π′′) we cannot conclude directly conclude

11

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 11

that equals(π′, π′′) holds. However, both expressions must be
evaluated to proceed with the computation (see Section 2.3)
and since e1 modifies the state but e2 not, we can conclude
that π0 = π′ ◦ π′′ ∧ π1 = π′′ ◦ π′ → equals(π0, π1). Hence,
EJe1K(π, π′)∧EJe2K(π, π′′)→ equals(π′, π′′). The case where e2

is the expression with side effects follows the same structure.

– Both e1 and e2 have side effects. Since both expressions have
side effects, we cannot guarantee the symmetric property, i.e.,
π0 = π′ ◦ π′′ ∧ π1 = π′′ ◦ π′ → ¬equals(π0, π1). Although in
principle the side effects are preserved in the language of TTS,
the dynamic interpretation of the target language might differ
due to evaluation order. Since we used our repair technique on
the Java programming language, we will proof the soundness of
the repair for it. From the Java specification [5] on page 322:
“The Java programming language guarantees that the operands
of operators appear to be evaluated in a specific evaluation order,
namely, from left to right.”. The repair operator maintains the
left to right evaluation order of e1 and e2 and therefore, we can
conclude that it preserves the semantic equivalence.

We assumed that e1 and e2 are simple expressions. In the more general
case, they are compound expressions. The proof for such a case is easily
performed by induction on the size of the compound expressions following
the aforementioned cases. The only case worth to be discussed is where
e1 and e2 are compound expressions that both contain a method call with
side effects, named e′1 and e′2 respectively. Therefore, the expression trees
are of the form:

<

...

...
e′1

...

e′2 ...

e1 e2

repair

12

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

12 AAU-SERG-2019-001

<

−

...

...
e′1

...

e′2 ...

0

e1 e2

Since the left to right evaluation order of Java corresponds to a pre-order
tree traversal of the abstract syntax tree of the expression, we can conclude
that e′1 will always be evaluated before e′2 after the repair. Thus, the repair
operator is sound and it maintains the semantic equivalence between the
expressions.

References

[1] G. D. Plotkin, “A structural approach to operational semantics,” 1981.

[2] A. K. Wright and M. Felleisen, “A syntactic approach to type soundness,”
Information and computation, vol. 115, no. 1, pp. 38–94, 1994.

[3] J. A. Robinson, “A machine-oriented logic based on the resolution principle,”
Journal of the ACM (JACM), vol. 12, no. 1, pp. 23–41, 1965.

[4] G. Liva, M. T. Khan, F. Spegni, L. Spalazzi, and M. Pinzger, “Automatic
repair of timestamp comparisons - TSE-2018-11-0423 - under review,” 2019.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java language specification.
Addison-Wesley Professional, 2000.

13

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

AAU-SERG-2019-001 13

Liva, Khan – Proof of Soundness of TTS and Repair Strategy

14 AAU-SERG-2019-001

AAU-SERG-2019-001
ISSN 1872-5392

