
Alpen-Adria-Universität Klagenfurt
Software Engineering Research Group

Technical Report Series

Extracting Parallel Control Flow Graphs
with Synchronization Information from

Java Programs

Giovanni Liva, Francesco Spegni, Luca Spalazzi, Andreas
Bollin, Martin Pinzger

Report AAU-SERG-2017-001

AAU-SERG-2017-001

Published, produced and distributed by:

Software Engineering Research Group
Institute of Informatics Systems
Faculty of Technical Sciences
Alpen-Adria-Universität Klagenfurt
Universittsstrae 65-67
9020 Klagenfurt
Austria

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://serg.aau.at/bin/view/Main/Publications

For more information about the Software Engineering Research Group:
http://serg.aau.at

c© copyright 2017, by the authors of this report. Software Engineering Research Group, Institute of In-
formatics Systems, Faculty of Technical Sciences, Alpen-Adria-Universität Klagenfurt, Austria. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the authors.

Extracting Parallel Control Flow Graphs with
Synchronization Information from Java Programs

Giovanni Liva∗, Francesco Spegni†, Luca Spalazzi†, Andreas Bollin‡ and Martin Pinzger∗
∗Software Engineering Research Group, Alpen-Adria Universität Klagenfurt, Austria

Email: {giovanni.liva,martin.pinzger}@aau.at
†Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Italy

Email: {f.spegni,l.spalazzi}@dii.univpm.it
‡Informatics Didactics, Alpen-Adria Universität Klagenfurt, Austria

Email: andreas.bollin@aau.at

Abstract—Developers spend a significant amount of their time
on understanding programs, especially if these programs are
large and use multi-threading. Regarding such programs, one
key aspect concerns the understanding of how shared data is
accessed by the different threads, for instance to prevent race
conditions. Most of the existing approaches address this issue by
using dynamic analysis of execution traces. However, dynamic
analysis has two main shortcomings: first, the program needs to
be executable, and, second, execution traces typically do not cover
all possible scenarios. In this paper, we propose an approach
that uses static analysis to extract Parallel Control Flow Graphs
with Synchronization Information (PCFGs-SI) from source code.
While CFGs help to understand the control flow of source code
statements executed in parallel, synchronization edges highlight
the shared access to critical code blocks protected by a locking
mechanism. We evaluated our approach and heuristics with five
open source Java projects that use two specific locking mecha-
nisms to handle the communication between different threads,
namely synchronized code blocks and synchronized methods. The
results show that our approach extracts synchronization edges
between synchronized code blocks with a precision of 97.50% and
recall of 99.50%. Edges between calls to synchronized methods
are extracted with a precision of 100% and recall of 96.35%. We
demonstrate the usefulness of our approach with two examples,
in which our approach is used to detect shortcomings in the use
of locking in Java.

I. INTRODUCTION

Developers spend a significant amount of their time on
understanding programs, especially if these programs are large
and use multi-threading. As presented by Dano et al. [1],
reverse engineering a multi-threaded program is, using their
analogy, a trip down to the Hades. Other studies [1], [2] show
that comprehension activities alone consume about 40%−60%
of all the resources available. This is mainly due to two
reasons: (i) high staff-turnover is an issue in software main-
tenance, and (ii) the frequent evolution of programs makes
it complicated to keep documentation up to date. Therefore,
an automated technique to reverse engineering models from
source code that helps to understand and document multi-
threaded programs is beneficial.

The extraction of software views from multi-threaded or
distributed programs to use as documentation is a challenging
task. Joyce et al. [3] show that the monitoring of a distributed
system is difficult because it requires the dynamic extraction of

information about the interaction between different processes.
Garcia et al. [4] show that similar problems can be found
in the debugging of multi-threaded programs. The main issue
concerns understanding the distribution of knowledge among
multiple parts that intercommunicate with synchronization
mechanisms, such as locks. It is hard to produce an exhaustive
coverage of all possible scenarios to understand how shared
data is accessed by the different processes and threads of a
system. However, such an understanding is needed to avoid or
fix race conditions.

Since this is a known problem, several approaches have
been developed to analyze multi-threaded programs, such as
[5], [6], [7] which make use of the runtime instrumentation
of the programming language to collect execution traces.
Afterwards, the traces are processed to discover undesired
behavior in the program under analysis. These approaches use
dynamic analysis. Dynamic analysis, however, has two main
shortcomings: first, the program needs to be executable, and
second, execution traces typically do not cover all possible
scenarios. Depending on the phase of the project, not all ver-
sions of a software system can be compiled into an executable
program. If a system can be executed, it is impossible to
execute all possible scenarios to get a complete view of the
behavior of that system. Static analysis is used to address these
two shortcomings, but only few static analysis approaches
exist to analyze the synchronization in software systems. For
instance, the Chord framework [8] is capable of detecting
statements that can cause a deadlock, atomicity violation, or
race conditions, and for each such situation outputs a warning.
Static approaches have in common that they detect specific
problems in the source code. However, we are not aware of any
static analysis approach that provides a comprehensive view
on how the different pieces of code in a system synchronize
the access to critical code blocks.

In this paper, we propose a novel static analysis approach
to extract Parallel Control Flow Graphs with Synchronization
Information (PCFGs-SI) from Java source code. Our PCFGs-
SI consist of (i) Control Flow Graphs (CFG) to represent
the control flow of statements, and (ii) synchronization edges
to highlight points of synchronization between code blocks
and methods in the CFG. The extraction is done in two

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

AAU-SERG-2017-001 1

phases: first, the source code is parsed to gather information on
classes, attributes, methods, and synchronization statements.
Second, the control flow graphs and synchronization informa-
tion from a selected set of classes is extracted. Regarding the
synchronization information, we currently handle two locking
mechanisms, namely locking of code blocks and locking of
methods. For both, our approach uses a number of heuristics
to detect code blocks protected by the same lock or calls to
synchronized methods of the same class or object. For each
match it inserts a corresponding edge in the control flow graph
denoting that the execution of this piece of code needs to be
synchronized. Finally, the PCGFs-SI are visualized using a
leveled graph visualization technique.

For the evaluation, we implemented our approach and
heuristics in a prototype tool that currently supports the
Java programming language. Note that our approach can
be extended to other programming languages, such as C#,
since they provide similar locking mechanisms. Furthermore,
our approach currently supports intrinsic locking via the
synchronized keyword, since these locks occurred most
frequently in our subject systems. We applied our tool to
five selected open source Java projects that are multi-threaded
and use both locking mechanisms. We manually analyzed a
random sample of extracted PCFGs-SI to validate the amount
of synchronization edges that were correctly extracted and
the amount of edges that were missed by our heuristics.
The results show that our approach is capable of extracting
synchronization edges between code blocks with a precision of
97.50% and recall of 99.50%. Synchronization edges between
calls to synchronized methods are extracted with a precision
of 100% and recall of 96.35%. In addition, we demonstrate
the usefulness of our approach with two examples, in which
PCFGs-SI are used to understand and detect shortcomings in
the use of locking in Java.

In summary, the main contributions of this paper are: (i)
an approach including a first set of heuristics to extract and
visualize parallel control flow graphs with synchronization
information; (ii) the prototype implementation of the approach;
(iii) the evaluation with five open source Java projects; and (iv)
the reference data set used for the evaluation.1

The remainder of the paper is organized as follows: Section
II presents related work. The description of the approach is
given in Section III and Section IV presents the experimental
study with five open source Java projects. Two examples of
PCFGs-SI are presented in Section V. The results and threats
to validity are discussed in Section VI. Section VII concludes
the paper and outlines directions for future work.

II. RELATED WORK

Related work concerns approaches that use dynamic and
static analysis to analyze and better understand multi-threaded
programs. Dynamic analysis is the main approach used to
reverse engineer information about synchronization behavior
of software systems. For instance, Bhattacharya et al. [5] use

1We will make the prototype tool and dataset available on our web-site.

dynamic analysis to align the schedule of threads allowing the
disclosure of inference bug patterns. Howarth et al. [6] use
the Java virtual machine tool interface to monitor information
leakage in single-threaded Java programs. Maheswara et al.
[7] present a visual debugger for Java threaded applications
that is built on top of the Java PathFinder [9] framework.

As mentioned above, dynamic analysis approaches face the
challenge of handling a large number and size of traces created
by executing the programs multiple times. Several approaches
exist that address this issue by first performing a static analysis
of the source code. For instance, Yuan and Xie [10] first
analyze the branching structure and then run the test suite to
collect execution traces. Using the branching structure, they
are able to merge traces that cover the same branch. Systä et
al. [11] use a hybrid approach. First, they ask developers to
mark parts of the code that they are interested in. Then, they
run the software collecting traces of only those marked parts.
Several metrics can be used to reduce the size of the traces.
For instance, Yuan et al. [12] use information about the usage
frequency and data dependency between operation nodes (e.g.,
method calls) as a guide to their partitioning algorithm that
reduces the size of the traces.

Several approaches exist that use static analysis for analyz-
ing multi-threaded programs. Many of them extract a state-
based representation of the source code to help developers
understand and document it. For instance, Amighi et al. [13]
present a sound technique to extract a Control Flow Graph
(CFG) from Java byte code without losing information. Krinke
[14] introduces Threaded-CFG, a technique to represent the
start and end points of threads. This representation allows
the application of slicing techniques to parallel code. Kester
et al. [15] provide a good overview of static analysis tools
that can be used to detect concurrency bugs in multi-threaded
programs. As one of their findings they mention that existing
tools only manage to find few errors. Among the evaluated
systems, the Chord framework [8] showed the best perfor-
mance concerning false positives. Chord is presented by Naik
et al. and is capable of detecting statements that can cause a
deadlock, atomicity violation, or race conditions, and for each
such situation outputs a warning. More bugs can be detected
with the approach of Chen et al. [16]. They extract Probably
Race Condition Graphs from the source code. Those graphs
point out shared resources to which access is not properly
synchronized.

Tao and Qian [17] present a set of best practices for writing
synchronized code in Java programs. Based on these findings,
they also present a technique to refactor classes that violate
these practices. Regarding synchronization in Java programs,
Prado et al. [18] introduce the Parallel Control Flow Graph
(PCFG). The graph represents control, data, and synchroniza-
tion flow of a program. In particular, the synchronization flow
of a concurrent program is represented by edges among threads
and processes that represent operations of synchronization and
communication. Their approach to extract synchronization in-
formation is, however, completely based on dynamic analysis
of programs. This approach has been extended by Howarth et

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

2 AAU-SERG-2017-001

al. [6], who present an approach to use PCFGs for detecting
race conditions using model checking.

In this paper, we present an approach that adapts the ideas
of Prado et al.’s approach [18] using solely static analysis of
source code. We also adapt their definition of synchronization
flow to match the features of the Java programming language
for implementing synchronization in multi-threaded programs.
Moreover, our approach differs from the Chord framework
[8] in two aspects: (i) it does not use the Java byte code
representation, but directly uses the Java source code; and (ii)
it does not only detect race conditions, but instead presents
a comprehensive view supporting developers in understanding
the synchronization in Java programs and exposing possible
shortcomings of it.

III. APPROACH

In this section, we introduce the Parallel Control Flow
Graph with Synchronization Information (PCFG-SI) and
present our approach to extract it from Java source code.
Our approach consists of two phases. First, we parse the
source code to gather the information on classes, attributes,
methods, and synchronized statements. In the second phase,
the methods of a given set of classes are analyzed to extract
the synchronization information on the access of critical code
blocks. In contrast to existing approaches that use dynamic
analysis, we apply static analysis using a set of heuristics.
This way we overcome two main shortcomings of dynamic
analysis, namely, first, the program needs to be executable,
and second, execution traces typically do not cover all possible
scenarios.

A. Parallel Control Flow Graph with Synchronization Infor-
mation

In the context of this work, a Parallel Control Flow Graph
with Synchronization Information (PCFG-SI) consists of a
set of sub-graphs each representing the Control Flow Graph
(CFG) of the code of a given method. We base our definition
of control flow graphs on the one provided by Allen [19] and
extend it in several ways. In his definition, a node represents
a code instruction and an edge the flow of execution from
one instruction to the next one. Our first extension is to add a
new type of node that represents a block of instructions that
are executed atomically. We refer to this node as synchronized
node. Furthermore, we add two new edge types to represent the
synchronization between different control flow graphs. In the
work of Prado et al. [18], synchronization edges represent the
access to the same code location by different processes. Since
we use static analysis in our work, a synchronization edge
shows where two code blocks potentially need to schedule the
access to a code block or method.

Listing 1 presents an example of a potential race condi-
tion between two Java classes. Class TableRowSWTBase
contains the variable lock that can be initialized via its
constructor. It is declared as Object, therefore can be
assigned any type of object. lock is used in the method
getTableCellCore to synchronize the access to parts of

its code. Class BuddyPluginBuddy defines the method
checkTimeouts that also contains a block of code that is
synchronized using this. The current implementation allows
developers to initialize the variable lock with an object of the
class BuddyPluginBuddy potentially causing an unwanted
race condition between the methods getTableCellCore
and checkTimeouts.

Currently, our approach supports two types of intrinsic
locks in Java, namely synchronized code blocks and syn-
chronized methods. They are supported by the Java pro-
gramming language using the synchronized keyword. A
synchronized code block is a piece of code enclosed by
the synchronized keyword. Similarly, a method declared
as synchronized defines an intrinsic lock to protect the
atomic execution of all the instructions in that method. In the
PCFG-SI, we introduce a synchronized block edge to represent
the first type and a synchronized method edge to represent the
second type of synchronization.

Since version 1.5, Java provides the Concurrency API to
support also explicit locking. We focused on intrinsic locking
since they occurred more frequently in our subject systems
and were also shared across classes while explicit locks
were not. Furthermore, we targeted the Java programming
language because of the availability of a big variety of
case studies as open source. Note that our approach can be
extended to take into account explicit locks in Java, and to
support other programming languages that provide similar
locking mechanisms. For instance, C# uses the annotation
MethodImpl(MethodImplOptions.Synchronized)
to define a method as synchronized and the keyword lock to
define a code block protected by a locking mechanism.

B. Preprocessing

In the preprocessing phase, we use Eclipse JDT2 to parse
the source code of each Java class and extract the following
information:

• package name
• class name
• extended class name
• list of methods with their signature
• list of public attributes
• list of imported classes
Package and class names are used to build the fully qualified

name of a class. The extended class name is used to reconstruct
the inheritance hierarchy of a class. Lists of methods and
public attributes are used to correctly link method calls and
attribute accesses to the class that declares them. In addition,
we extract the list of imported classes to facilitate the recon-
struction of the fully qualified names of the data types used
in a class.

C. Extraction of PCFGs-SI

To construct the Parallel Control Flow Graphs with Syn-
chronization Information, the developer needs to select at

2http://www.eclipse.org/jdt/

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

AAU-SERG-2017-001 3

1 p u b l i c a b s t r a c t c l a s s TableRowSWTBase implements
TableRowSWT {

2 . . .
3 p r o t e c t e d Object lock ;
4 . . .
5 p u b l i c TableRowSWTBase (Object lock , . . .) {
6 t h i s .lock = lock ;
7 . . .
8 }
9 . . .

10 p u b l i c TableCellCore getTableCellCore (String
name) {

11 synchronized (lock) { . . . }
12 }
13 . . .
14 }

1 p u b l i c c l a s s BuddyPluginBuddy {
2 . . .
3 p r o t e c t e d void checkTimeouts () {
4 . . .
5 synchronized (t h i s) {
6 . . .
7 }
8 . . .
9 }

10 . . .
11 }

Listing 1: Code example taken from Vuze version 5721-04 showing a potential race condition between the method
getTableCellCore of class TableRowSWTBase and the method checkTimeouts of class BuddyPluginBuddy.

least two methods. Given this input, the analysis process is
performed in three steps. In a fourth step, the PCFGs-SI are
visualized using leveled graphs.

I. Control Flow Graph: The first step consists of creating
the Control Flow Graph (CFG) of each selected method from
the abstract syntax tree representation of the source code
created by Eclipse JDT. Each instruction in the source code
is represented by a node and the control flow between the
instructions is represented by edges. When we encounter an
instruction that creates an anonymous class, we add a node
for that instruction and a node to represent the anonymous
class. Inside the latter node, we create the control flow graphs
of each method contained by the anonymous class. When we
encounter an instruction in the abstract syntax tree that defines
a synchronized code block, we add a synchronized node to
the CFG. The synchronized node embeds the instructions of
its synchronized code block.

In addition, during the visit of the abstract syntax tree, we
build a symbol table that contains all the variables of a class
and their scope of visibility, i.e., class, method, statement
block. Variables that are inherited from parent classes are
also included in the symbol table. The symbol table together
with the data collected in the preprocessing phase are used to
reconstruct the exact type of each variable referenced in the
selected methods. This information is needed to extract the
synchronization edges between code blocks and methods as
described in the following.

II. Synchronized Method Calls: The goal of this step is
to extract the synchronized method edges between method
invocations. For this, we traverse the control flow graphs
of the selected methods, and for each node denoting a
method invocation, we determine the corresponding method
declaration(s). Since object-oriented programming languages
support overriding and extension of methods, multiple method
declarations might match. Therefore, we introduce the term
compatible method declaration. We define a method declara-
tion as compatible with a method call if it fulfills the following
three requirements:

• the names of the method declaration and the call are
equal;

• the number of parameters in the method declaration and
the number of arguments in the method call is the same;

• and each type in the signatures of the method call and
method declaration has a compatible type. The definition
of compatible type for Java is given in [20].

For determining the class whose method is called, we first
check which type is referenced in the method invocation. If
the invocation does not reference a variable and respectively
a class, we first search a compatible method declaration in
the current class. If we cannot find a compatible method
declaration, we extend the search to its parent classes. If the
invocation references a variable, we first determine the class
referenced by the variable. If the class is an instantiable (i.e.,
concrete) type, we search for a compatible method declaration
inside that class. If we cannot find a corresponding method
declaration, we extend the search to its parent classes until we
find a compatible method declaration or reach the root class.

Following the idea of Hammer et al. [21], in the case where
the method invocation is referencing a virtual method, we
resolve all possible concrete implementations of it. If the class
referred by the variable is defined as abstract, we determine
all its parent- and sub-classes and collect all the compatible
method declarations matching the invoked method. If the type
is an interface class, we first determine all the sub-interfaces
extending the interface, next all the classes implementing
these interfaces, and then all the sub-classes of these classes.
We search these classes for compatible method declarations
that match the method invocation. From the list of matched
compatible method declarations we keep only the methods
declared as synchronized and record the fully qualified
names of classes for those.

In the next step, the list of classes of each pair of method
invocations from two different control flow graphs (including
the control flow graphs created for methods of anonymous
classes) are compared. If the list of classes of two method
invocations have at least one class in common, we insert a syn-

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

4 AAU-SERG-2017-001

chronized method edge between the two corresponding nodes.
We distinguish two types of synchronized method edges:
maybe-synchronized method edge and mustbe-synchronized
method edge. We create a mustbe-synchronized method edge if
both method invocations point to static synchronized methods
of the same class. Only then can we guarantee that they
share the same lock. In the other cases, we create a maybe-
synchronized method edge.

III. Synchronized Code Blocks: In this step, we extract
the synchronized block edges between synchronized code
blocks. A synchronized block edge models the fact that two
synchronized code blocks potentially share the same lock.

Our approach traverses the control flow graphs of the se-
lected methods, and for each synchronized node it determines
the data type of the object used for locking the code block.
Next, we distinguish two ways how the lock can be initialized:
(i) the lock is only set inside the class; and (ii) the lock can
also be set from outside the class. We say that a lock can be
initialized from outside of the class if one of the following
conditions holds:

• the lock is set via a parameter of the method that contains
the synchronized code block;

• or the lock is defined as an attribute of the class that
appears on the left hand-side of an assignment statement,
and the right hand-side of the assignment is not a call to
a constructor.

We added the last condition, since a call to a constructor
always creates a new object that is usually not overridden from
outside the class.

Finally, using this information we pairwise compare the
synchronized nodes from two different methods (i.e., control
flow graphs). A synchronized block edge between two syn-
chronization nodes is added, if the two locks have a compatible
type according to the definition in [20], and if at least one of
the following conditions is satisfied:

• both synchronized blocks are contained by methods of
the same class and the locks reference the same class
attribute;

• both locks are inherited from the same super class;
• one lock can be set from outside of the class and the

other lock is performed on the this object;
• or both locks can be set from outside of the class.
The first condition handles implementations in which a lock

is shared between methods of the same class. The second
condition handles implementations in which a lock is inherited
from the same parent class. The third condition handles
implementations in which a synchronized block uses a lock
that is initialized with an object that locks on itself. The last
condition handles implementations in which the same object
might be used to initialize the locks of two synchronized code
blocks.

IV. Visualizing PCFGs-SI: For visualizing PCFGs-SI we
use a leveled graph visualization in which nodes of the
extracted PCFGs-SI are represented as ellipses and edges
between nodes are represented as arcs. Starting nodes are

represented as dashed ellipses. Black nodes represent ending
nodes of the control flow. Dashed boxes represent synchro-
nized code blocks. Solid arcs represent the control flow be-
tween statements. Dashed edges represent synchronized block
edges. Maybe-synchronized method edges are drawn as dotted
arcs. Strong solid arcs represent mustbe-synchronized method
edges. We implemented the visualization using Graphviz.3

Figure 1 depicts an example of PCFGs-SI extracted from
two Java classes Thread_1 and Thread_2 that extend the
Java Thread class. We selected the run() methods in both
classes to create the PCFGs-SI. Both methods use a class
attribute lock of type Object to protect the access to their
critical code blokcs. In both classes, the value of this attribute
is initialized in the constructor. We add a synchronized block
edge between the two synchronized nodes because the locking
variables have a compatible type and satisfy the fourth condi-
tion - both locks can be initialized from outside of the class.
Their value is set in the constructors, therefore there exists
the possibility that both locks are initialized with the same
object. A maybe-synchronized method edge between the nodes
representing the invocation in Line 9 of the Thread_1 class
and the invocation in Line 7 of the Thread_2 class is added,
since they both implement a call to the synchronized
method init() of class Thread_2.

IV. EVALUATION

In this section, we present the evaluation of our approach
to extract parallel control flow graphs with synchronization
information from Java programs. For this, we developed a
prototype tool that implements our approach and performed an
empirical study with five selected open-source Java projects.
With the results obtained from the empirical study, we aim to
answer the following two research questions:
RQ1 What is the precision PSME and recall RSME of our

approach to extract synchronized method edges? PSME

is measured by counting the number of correct and er-
roneous mustbe- and maybe-synchronized method edges
extracted by our approach. RSME is measured by count-
ing the number of synchronized method edges missed
by our approach.

RQ2 What is the precision PSBE and recall RSBE of our
approach to extract synchronized block edges? PSBE

is measured by counting the number of correct and
erroneous synchronized block edges extracted by our
approach. RSBE is measured by counting the number
of synchronized block edges missed by our approach.

A. Experimental Setup

For the evaluation, we performed an empirical study with
five selected open source Java projects. We chose Java because
it offers language features to implement synchronized code
blocks and methods. Furthermore, Java is widely used in a
large number of open-source projects whose repositories are
public available and easy to access. Prominent examples of

3http://www.graphviz.org/

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

AAU-SERG-2017-001 5

1 import Thread_2 ;
2 c l a s s Thread_1 ex tends Thread {
3 Object lock ;
4 Thread_2 var ;
5 Thread_1 (Object lock) {
6 t h i s .lock = lock ;
7 }
8 p u b l i c vo id run () {
9 i n t init = var .init () ;

10 synchronized (lock) {
11 System .out .println ("Thread 1: " + init) ;
12 }
13 Thread .sleep (1 0 0 0) ;
14 System .out .println ("End") ;
15 }
16 }

1 c l a s s Thread_2 ex tends Thread {
2 Object lock ;
3 Thread_2 (Object lock) {
4 t h i s .lock = lock ;
5 }
6 p u b l i c vo id run () {
7 i n t init = init () ;
8 synchronized (lock) {
9 System .out .println ("Thread 2: " + init) ;

10 }
11 System .out .println ("End") ;
12 }
13 p u b l i c synchronized i n t init () {
14 re turn t h i s .hashCode () ;
15 }
16 }

Thread_1::run

sync block on lock

Thread_2::run

sync block on lock

Edges Legend

Declaration_init call_to_print

Declaration_init

call_to_sleep

call_to_print

call_to_print

control-flow
synchronized block

maybe-synchronized
mustbe-synchronizedcall_to_print

Figure 1: PCFGs-SI extracted from the two run methods of class Thread_1 and class Thread_2. Dashed ellipse represent
the starting node of the control flow and black nodes represent ending instructions. Dashed boxes represent synchronized nodes
containing the set of instructions guarded by a lock.

Table I: Selected Java projects used in the evaluation with
number of classes (NOC), number of methods (NOM), number
of synchronized code-blocks (NSB), and number of synchro-
nized method declarations (NSM).

Project Version NOC NOM NSB NSM
ActiveMQ 5.13.3 2441 23708 717 478
Airavata 0.15 3326 26497 23 64
Jetty 9.3.9v20160517 1793 13935 321 116
Vuze 5721-04 4323 40323 2144 175
Wildfly-Core 3.0.0.Alpha9 3557 21924 346 328
Total 15440 126387 3551 1161

open source Java projects are the Apache projects or the
Spring Framework4. We selected five open source projects that
use the aforementioned Java synchronization mechanisms in
their source code. Furthermore, we considered projects from
different vendors and of different size. The selected five open-
source Java projects are listed in Table I.

ActiveMQ5 is a message broker and Airavata6 is a software
suite to compose, manage, execute, and monitor large scale
applications and workflows on computational resources. Both
are Apache projects. Jetty7 is a web server provided by the

4https://github.com/spring-projects/spring-framework
5http://activemq.apache.org/
6http://airavata.apache.org
7http://www.eclipse.org/jetty

Eclipse Foundation. Vuze8 is a Java implementation of the
bittorrent protocol. We decided to include Wildfly-core9, an
application server developed by JBoss, because it relies on
multiple external libraries. Table I lists several descriptive
statistics computed for the projects. The numbers show that
the size of the projects varies from 1793 to 4323 classes,
whereas Vuze is the largest project. Only a small fraction
of these methods is declared as synchronized, which was ex-
pected. Furthermore, synchronized code blocks are used more
frequently than synchronized methods except in Airavata. In
particular, Vuze contains more than 2140 synchronized code
blocks. In total, our sample comprises 3551 synchronized code
blocks and 1161 synchronized methods, which we deem as
representative for our study to obtain valid results.

Regarding the execution of the study, we first ran our
prototype tool on the product code of each selected project
and for each class extracted the information described in
Section III-B. In addition, for each synchronized code block,
we extracted the data type of the lock and its accessibility
from inside and outside the class. For each method invocation
the tool applies the heuristics presented in Section III-C to
find out the list of potential called synchronized methods.
Next, we used our tool to create the PCFGs-SI for methods
that a) contain a synchronized code block and b) contain a

8http://dev.vuze.com
9https://github.com/wildfly/wildfly-core

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

6 AAU-SERG-2017-001

potential call to a synchronized method. From these graphs,
we output the list of extracted synchronization edges found
between all pairs of methods. In total, our tool extracted 6068
synchronized method edges and 912177 synchronized block
edges. For each edge, the list contains the fully qualified names
of the two methods, the line number of the two synchronized
code blocks or calls to the synchronized method(s), plus the
type of the synchronized edge. This list and its information
served as the basis for our manual analysis to compute the
precision and recall of our approach. The manual analysis was
performed by two co-authors of the paper using the source
code navigation features of IntelliJ.10

B. Evaluation of Synchronized Method Edges

We calculated precision and recall of our approach to
extract synchronized method edges. Remember, two method
invocations need to be synchronized, if they call a method
declared as synchronized from the same instance of a class.

First, for evaluating the precision, we randomly selected
400 from the 6068 synchronized method edges. This sample
set allows us to obtain valid results with a 95% confidence
level and 5% margin of error. For each synchronized method
edge we used IntelliJ to manually analyze the source code of
the corresponding classes to find out whether the extracted
edge is correct. This manual analysis was done as follows:
for each of the two invocations of a given edge we first used
the "Go To - Declaration" feature to find the declarations of
the two invoked methods. For each method declaration, we
next obtained a list of all implementations of that method
using "Go To - Implementations". From the list of methods we
only kept the fully qualified names of the classes of methods
that are declared as synchronized. Then, we checked whether
the two lists of classes had at least one class in common.
In addition, if the edge was a mustbe-synchronized method
edge we further checked if the invoked methods are declared
as static. The results of our manual analysis showed that our
approach can extract both types of synchronized method edges
with a precision (PSME) of 100%. This was expected since
all the information on these edges can be obtained statically
from the source code.

Secondly, for evaluating the recall of our approach we
manually investigated all 1161 synchronized method decla-
rations from the five open source Java projects. For each
such method, we used the "Find Usages of the base method"
feature of IntelliJ to find all the usages, i.e., invocations,
of a synchronized method in the source code of a project.
We searched for the usages of the base method to cover all
usages of the method taking into account dynamic dispatching.
This approach, however, also obtained invocations from the
base method implemented in other subclasses. Therefore, we
checked each returned usage if the synchronized method under
analysis can be reached using the "Go To - Declaration" feature
and, if not, we filtered it. The result was a list of verified usages
for each synchronized method. Using this list, we built pairs

10https://www.jetbrains.com/idea

of all possible combinations of the verified usages. For each
pair, we then computed the PCFGs-SI of the methods that
contains the two usages. Finally, we checked whether the two
PCFGs-SI contained the expected synchronized method edge
counting the number of found and missed edges.

Table II presents the outcome of our manual analysis. The
two columns on the left show the number of methods declared
as synchronized in each project and the number of calls
to them. The largest number of synchronized method calls,
namely 390, was found in the ActiveMQ project. The project
Airavata has the smallest number of calls (48), but also the
smallest number of synchronized methods (64). In the Wildfly-
Core project, we observed that many of the 328 synchronized
methods are mainly called from methods defined outside of
the project, e.g., listener methods or the run method of Java
threads, therefore we only found 181 calls.

The two columns, SE Expected and SE Extracted, show the
number of expected synchronized method edges and number
of edges extracted by our approach which we used to compute
the recall presented in the last column. Overall, the values
for the recall show that our approach is capable of extracting
synchronized method edges with average recall of 96.35%. For
instance, ActiveMQ was the project with the highest number
of calls to synchronized methods, namely 390. In this project,
we manually found 1952 synchronized method edges out of
which 1835 were correctly extracted by our approach, giving
a recall of 94.01%. For Airavata, our approach extracted 205
out of the 207 expected edges.

Through the manual analysis we also discovered the dif-
ferent situations in which our approach failed to extract a
synchronized method edge. Currently, our prototype tool does
not handle expressions used in the inline initialization of
arrays. These initializations are frequently used in ActiveMQ
to initialize arrays of objects as parameter of calls to the
logging function. Our prototype tool also does not handle
implicit calls to the toString() method, for instance in
the concatenation of strings. Several synchronization edges are
not extracted because our prototype tool fails to resolve the
correct types and consequently the methods used in chained
method calls. In particular, if one of the types is declared
in an external library. If it cannot resolve one method call,
it stops to check the successive method calls. This situation
most frequently occurs in Jetty, Vuze, and Wildfly-Core.

C. Evaluation of Synchronized Block Edges.

We addressed RQ2 by collecting all possible pairs of
methods that contain a synchronized code block which share
a compatible type for the lock. We excluded pairs that do
not share a compatible type since we can be certain that they
do not synchronize on the same object. Over the five open
source Java projects, we collected 912177 pairs of methods
that potentially synchronize on the same object. From this set
of methods we randomly selected 400 allowing us to obtain
valid results with a 95% confidence level and 5% margin of
error.

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

AAU-SERG-2017-001 7

Table II: Results of the evaluation of the recall for detecting synchronized method edges in the five open source Java projects.

Project Sync. Method Sync. Methods Calls SE Expected SE Extracted Recall
ActiveMQ 478 390 1952 1835 94.006%
Airavata 64 48 207 205 99.034%
Jetty 116 95 551 525 95.281%
Vuze 175 156 817 807 98.776%
Wildfly-Core 328 181 652 617 94.632%
Total 1161 870 4179 3989 96.346% (Avg)

For each of the 400 pairs we used our approach to create
the PCFGs-SI of each method. We then verified each pair
by manually checking whether each synchronized block edge
extracted in the PCFGs-SI was correct and whether there were
no missing synchronization edges. For this, we analyzed the
source code of the classes containing the two methods under
analysis. Starting from the two synchronized statements, we
manually reconstructed the data flow of the two locks and
checked whether they could be initialized with the same object.
We counted the number of correct and missing edges and
based on these numbers computed the precision and recall.

Out of the 400 pairs, i.e., edges, our approach correctly
identified 70 edges resulting in a precision PSBE of 97.50%.
It missed to extract only 2 edges resulting in a recall RSBE

of 99.50%. These numbers clearly indicate that our approach
covers the majority of situations in which different synchro-
nized code blocks potentially share the same lock. Note, not
all of the 400 pairs required a synchronization between them.
In addition, the evaluation also pointed out the situations
in which our heuristics did not work. The first situation
concerns statements in which the return value of a method
call is assigned to the lock. The problem is, that our approach
currently does not analyze the implementation of the called
method. For instance, if two synchronized code blocks are
guarded by locks that have a compatible type and both are
assigned a value returned by the call to the same method,
our approach creates a synchronized block edge. Each call,
however, might return a new instance therefore the extracted
edge is not correct. The recall of our approach was also
affected because it currently does not process the Java ternary
operator x = condition ? v1 : v2 correctly.

V. APPLICATIONS OF PCFGS-SI

PCFGs-SI show which parts of a software system syn-
chronize the access to critical code blocks and methods.
One application of our graphs is to help developers under-
stand and document this aspect in multi-threaded programs.
Furthermore, developers can analyze the PCFGs-SI extracted
from their project and detect classes with shortcomings in
the implementation of the synchronization. In this section, we
present two examples taken from Vuze and Jetty to showcase
how PCFGs-SI can be used to first, detect a potential race
condition, and second to understand multiple synchronizations
between two classes.

A. Detecting a Race Condition in Synchronized Code Blocks

In our first example, we use PCFGs-SI for detecting situa-
tions in the source code in which the same lock can be assigned

to two different protected code blocks and thereby cause a
race condition. We found an example of such a situation
in the Vuze project in the classes AzureusCoreImpl and
TableViewImpl. AzureusCoreImpl handles the core
status of the whole Vuze application. It contains several
methods that contain synchronized blocks using the keyword
this as lock. The reference of a AzureusCoreImpl object
is passed to all the plugins to allow the extension of its func-
tionalities. The class TableViewImpl is used by developers
to create a table for the GUI of a plugin. It contains several
methods that contain synchronized blocks to synchronize the
processing of table rows, using the attribute rows_sync that
can be set via the public method setRowsSync.

Figure 2 shows an excerpt of the PCFGs-SI ex-
tracted for the two methods canStart of the class
AzureusCoreImpl and runForSelectedRows of the
class TableViewImpl. Each method contains a synchro-
nized code block. The code block in canStart is guarded
by this and the code block in runForSelectedRows is
guarded by rows_sync. Since the type of rows_sync is
defined as Object our approach detects a potential synchro-
nization between the two code blocks and inserts a synchro-
nized block edge. Consequently, there is the possibility that the
developer uses an instance of the AzureusCoreImpl class
as lock for the class TableViewImpl. This can create a race
condition between the GUI of the plugin and the core of the
application. A better solution would be to use a specific type
for the rows_sync lock to prevent such a race condition.

B. Understanding Multiple Synchronized Method Calls
PCFGs-SI can help developers understand classes that share

multiple synchronization edges. Figure 3 shows an example
found in the Eclipse Jetty project. We present the PCFGs-SI
extracted for the two doStop methods that share multiple
method calls to static synchronized methods of the class
ShutdownThread. The ShutdownThread class is imple-
mented as singleton that maintains a list of socket instances
registered with it. It also provides the functionality to close
these sockets.

The two classes ClientContainer from package
org.eclipse.jetty.websocket.jsr356 and Web-
SocketClient from package org.eclipse.jetty.-
websocket.client use sockets and therefore contain
several calls to the synchronized methods of the class
ShutdownThread. The ClientContainer class handles
connections from clients that use the javax.websocket
API. Class WebSocketClient provides a means of estab-
lishing connections to remote websocket endpoints. In total,

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

8 AAU-SERG-2017-001

sync block on this

TableViewImpl::runForSelectedRows
sync block on rows_sync

if call_to_equals
return_true

True

_end_if_False if notEqual

return_true

True
_end_if_False

assignment_rows

try

Declaration_raf

catch

...

e_instanceOf_Throwable

endtry

True False
return_false

if call_to_isDisposed returnTrue

_end_if_
False Declaration_rows

Declaration_ran ...

Edges Legend
cont
synchronized block
maybe-synchronized
mustbe-synchronized

AzureusCoreImpl::canStart

Figure 2: Excerpt of the PCFGs-SI extracted for the canStart and runForSelectedRows methods of the Vuze project
showing an example of a potential race condition caused by using an object of the class AzureusCoreImpl as lock in the
method runForSelectedRows. Nodes labeled with "..." represent groups of statements not relevant for the example.

ClientContainer::doStop

WebSocketClient::doStop

call_to_deregister call_to_clear

if call_to_isRegistered

call_to_deregister

call_to_doStop

call_to_doStop

...

True _end_if_

False

... if call_to_isDebugEnabled

call_to_debug
True

_end_if_

False

Edges Legend
control f ow
synchronized block
maybe-synchronized
mustbe-synchronized

Figure 3: Excerpt of the PCFGs-SI extracted from the Jetty project showing three mustbe-synchronized method edges between
the two doStop methods of the classes ClientContainer and WebSocketClient. Nodes labeled with "..." represent
groups of statements not relevant for the example.

our approach detected 19 mustbe-synchronized method edges
for these two classes. Figure 3 shows the three synchronized
edges between the two doStop methods. The first two edges
on the left hand side are detected since they represent calls to
the static methods of the ShutdownThread class. The third
edge represents the calls to the static doStop method of the
super class ContainerLifeCycle.

VI. DISCUSSION & THREATS TO VALIDITY

This section discusses the results of our study and lim-
itations of our current approach. Furthermore, we discuss
potential threats to validity in our evaluation.

A. Discussion

We introduced a static analysis approach to overcome two
relevant shortcomings of dynamic analysis, namely first, the
program needs to be executable and second, execution traces
typically do not cover all possible scenarios. In contrast to
dynamic analysis, our approach can perform the extraction
of synchronization information at every stage of the software
development cycle. The only requirement of our approach is
that the source code needs to be parseable. Since we do not
need to handle multiple execution traces, we also argue that
our approach is more scalable and easier to use than existing

approaches based on dynamic analysis. This is based on the
fact, that we need to handle less information.

On the other hand, dynamic analysis approaches might
be more accurate for detecting race conditions because the
execution traces contain the actual types instantiated and
methods executed. However, we would like to point out that
our static analysis approach showed to extract synchronized
block edges with a precision of 97.50% and a recall of 99.50%
and synchronized method edges with a precision of 100% and
a recall of 96.35%. Furthermore, dynamic analysis might miss
to detect some race conditions since not all possible execution
traces that lead to race conditions might have been generated.

Compared to existing static analysis approaches, most
prominently the Chord framework [8], our approach provides
a comprehensive view on the synchronization aspect of Java
programs. This view can be used by developers to detect
shortcomings in the implementation, such as demonstrated
with the first example in Section V, that can potentially lead
to race conditions. The evaluation of the full benefit of our
approach for developers, however, needs experiments with
developers. This is subject to our future work.

The manual evaluation with the five open source Java
projects also showed a number of limitations of our approach.
Regarding the implementation, our prototype tool does not
consider array initialization expressions and implicit calls to

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

AAU-SERG-2017-001 9

the method toString(), for instance in string concatena-
tions. Moreover, it does not parse libraries used in a project.
For instance, if there is a chain of method calls and one call
returns a type defined in a library, our tool stops to process
the chain because it cannot resolve the specific method call.
Furthermore, we currently do not apply a full-fledged data
flow analysis. Such an analysis could help to further improve
the precision for detecting synchronized block edges. We plan
to address these issues in our future work.

B. Threats to Validity

In the following, we discuss several threats to the internal
and external validity of our results and show how we addressed
them in our experiments.

Internal Validity. The main threat to the internal validity is
due to the implementation of our prototype tool. We mitigated
this threat by thoroughly testing the prototype tool manually
and with unit tests. For the manual analysis, we randomly
selected 400 pairs of methods to evaluate the precision and
recall of our heuristics to detect synchronized block and
synchronized method edges. The size of our sample set is
larger than the minimum number required to obtain results at
a 95% confidence level with a 5% error. Moreover, we eval-
uated the recall of synchronized method edges with a manual
investigation of every method declared as synchronized in the
five open source Java projects.

The manual analysis was performed by two co-authors of
the paper with the help of IntelliJ. Both co-authors have
profound knowledge in Java and its locking mechanisms. Fur-
thermore, IntelliJ is a well-known development environment
that is supported by a large community and heavily used in
industry, therefore we can safely assume that it is well tested
and obtains correct results.

Another threat to the internal validity is that our approach
currently handles only intrinsic locking mechanisms provided
by the Java programming language. It does not handle explicit
locks of the Concurrency API introduced in Java 1.5. We fo-
cused on intrinsic locking because they occur more frequently
than explicit locks. In our five subject systems, out of the
15440 classes, only 41 classes (0.25%) use explicit locking
while 741 classes (4.8%) use intrinsic locking of code blocks
and 371 classes (2.4%) contain synchronized methods.

Finally, our current implementation uses a light-weight data
flow analysis. Although this approach was sufficient to reach a
high precision and recall, we are convinced that a full-fledged
data flow analysis will further help to improve the precision.
We plan to add such a data flow analysis in our future work.

External Validity. The results of our approach may not
be generalized to other software projects. We mitigated this
threat by choosing five open source Java projects of different
size and of different communities to improve the validity of
our study. Further studies with more systems are, however,
needed to further mitigate this threat. Furthermore, we only
investigated open source Java projects. Extending the studies
to projects implemented with other programming languages,
such as C#, is subject to our future work.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we presented a static analysis approach to
extract parallel control flow graphs with synchronization infor-
mation (PCFGs-SI) from Java source code. While the control
flow shows the execution of statements, synchronization edges
represent points of synchronization between code blocks and
methods. The main goal of our approach is to provide a
comprehensive view on how different parts of the source code
are using locking to schedule the access to critical code blocks,
and to help developers to detect shortcomings in the source
code that might lead to race conditions.

We introduced several heuristics for extracting the synchro-
nization edges and manually evaluated them with the source
code of five open source Java projects. The results show
that our approach is capable of extracting synchronized block
edges with a precision of 97.50% and recall of 99.50%. The
precision and recall of extracting invocations of synchronized
methods is 100% and 96.35%, respectively. Furthermore, we
presented two examples of how a graph visualization of
PCFGs-SI can support developers in detecting a potential race
condition and understand multiple synchronized method calls.

Future work is mainly concerned with further improving the
accuracy of our approach and heuristics. For this, we plan to
address the limitations that we found in our evaluation. We
also plan to add a full-fledged data flow analysis to reduce the
number of false positives. Furthermore, we plan to consider
explicit locking as provided by the Java Concurrency API and
extend our approach to other programming languages, such as
C#. Regarding the evaluation, we plan to extend our studies
to other open source and industrial Java projects and projects
developed in other programming languages. Finally, we plan
to evaluate the usefulness of our approach in experiments with
software developers.

REFERENCES

[1] P. Dano and A. Bollin, “Down to hades and back - experiences gained
in comprehending a distributed legacy system,” in Proceedings of the
Interational Scientific Conference on Informatics. IEEE, 2015, pp. 85–
90.

[2] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
a roadmap,” in Proceedings of the Conference on the Future of Software
Engineering (FOSE). ACM, 2000, pp. 73–87.

[3] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Monitoring distributed
systems,” ACM Transactions on Computer Systems (TOCS), vol. 5, no. 2,
pp. 121–150, 1987.

[4] H. Garcia-Molina, F. Germano Jr, and W. H. Kohler, “Debugging a
distributed computing system,” Transactions on Software Engineering
(TSE), vol. 10, no. 2, pp. 210–219, 1984.

[5] N. Bhattacharya, O. El-Mahi, E. Duclos, G. Beltrame, G. Antoniol,
S. Le Digabel, and Y.-G. Guéhéneuc, “Optimizing threads schedule
alignments to expose the interference bug pattern,” in Proceedings of
the International Symposium on Search Based Software Engineering
(SBSE). Springer, 2012, pp. 90–104.

[6] J. Howarth, I. Altas, and B. Dalgarno, “Information flow control using
the java virtual machine tool interface (jvmti),” in Proceedings of
the International Conference on Availability, Reliability and Security
(ARES). IEEE, 2010, pp. 689–695.

[7] G. Maheswara, J. S. Bradbury, and C. Collins, “Tie: An interactive
visualization of thread interleavings,” in Proceedings of the International
Symposium on Software Visualization (SOFTVIS). ACM, 2010, pp.
215–216.

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

10 AAU-SERG-2017-001

[8] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
java,” in Proceedings of the Conference on Programming Language
Design and Implementation (PLDI). ACM, 2006, pp. 308–319.

[9] K. Havelund and T. Pressburger, “Model checking java programs using
java pathfinder,” International Journal on Software Tools for Technology
Transfer (STTT), pp. 366–381, 2000.

[10] H. Yuan and T. Xie, “Automatic extraction of abstract-object-state
machines based on branch coverage,” in Proceedings of the International
Workshop on Reverse Engineering To Requirements (RETR), 2005, pp.
5–11.

[11] T. Systä and K. Koskimies, “Extracting state diagrams from legacy sys-
tems,” in Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Springer, 1997, pp. 272–273.

[12] Z. Yuan, Y. Ma, J. Bian, and K. Zhao, “Automatic enhanced cdfg
generation based on runtime instrumentation,” in Proceedings of the
International Conference on Computer Supported Cooperative Work in
Design (CSCWD). IEEE, 2013, pp. 92–97.

[13] A. Amighi, P. d. C. Gomes, D. Gurov, and M. Huisman, “Sound control-
flow graph extraction for java programs with exceptions,” in Proceedings
of the International Conference on Software Engineering and Formal
Methods (SEFM). Springer, 2012, pp. 33–47.

[14] J. Krinke, “Static slicing of threaded programs,” ACM Sigplan Notices,
vol. 33, no. 7, pp. 35–42, 1998.

[15] D. Kester, M. Mwebesa, and J. S. Bradbury, “How good is static analysis

at finding concurrency bugs?” in Proceedings of the Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, 2010, pp.
115–124.

[16] Y. Chen, Y.-H. Lee, W. E. Wong, and D. Guo, “A race condition graph
for concurrent program behavior,” in Proceedings of the International
Conference on Intelligent System and Knowledge Engineering (ISKE),
vol. 1. IEEE, 2008, pp. 662–667.

[17] B. Tao and J. Qian, “Refactoring java concurrent programs based on syn-
chronization requirement analysis,” in Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2014, pp. 361–370.

[18] R. R. Prado, P. S. Souza, G. G. Dourado, S. R. Souza, J. C. Estrella,
S. M. Bruschi, and J. Lourenco, “Extracting static and dynamic structural
information from java concurrent programs for coverage testing,” in
Proceedings of the Latin American Computing Conference (CLEI).
IEEE, 2015, pp. 1–8.

[19] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7,
pp. 1–19, 1970.

[20] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification: Java SE 8 Edition. Pearson Education, 2014.

[21] C. Hammer, R. Schaade, and G. Snelting, “Static path conditions for
java,” in Proceedings of the Workshop on Programming Languages and

Analysis for Security (PLAS). ACM, 2008, pp. 57–66.

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

AAU-SERG-2017-001 11

Extracting Parallel Control Flow Graphs with Synchronization Information from Java Programs

12 AAU-SERG-2017-001

AAU-SERG-2017-001
ISSN 1872-5392

